skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: How and why grasshopper community maturation rates are slowing on a North American tall grass prairie
Invertebrate growth rates have been changing in the Anthropocene. We examine rates of seasonal maturation in a grasshopper community that has been declining annually greater than 2% a year over 34 years. As this grassland has experienced a 1°C increase in temperature, higher plant biomass and lower nutrient densities, the community is maturing more slowly. Community maturation had a nutritional component: declining in years/watersheds with lower plant nitrogen. The effects of fire frequency were consistent with effects of plant nitrogen. Principal components analysis also suggests associated changes in species composition—declines in the densities of grass feeders were associated with declines in community maturation rates. We conclude that slowed maturation rates—a trend counteracted by frequent burning—likely contribute to long-term decline of this dominant herbivore.  more » « less
Award ID(s):
2025849
PAR ID:
10376240
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Biology Letters
Volume:
18
Issue:
1
ISSN:
1744-957X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Semi‐arid grasslands on the Mongolian Plateau are expected to experience high inputs of anthropogenic reactive nitrogen in this century. It remains unclear, however, how soil organisms and nutrient cycling are directly affected by N enrichment (i.e., without mediation by plant input to soil) vs. indirectly affected via changes in plant‐related inputs to soils resulting from N enrichment. To test the direct and indirect effects of N enrichment on soil organisms (bacteria, fungi and nematodes) and their associated C and N mineralization, in 2010, we designated two subplots (with plants and without plants) in every plot of a six‐level N‐enrichment experiment established in 1999 in a semi‐arid grassland. In 2014, 4 years after subplots with and without plant were established, N enrichment had substantially altered the soil bacterial, fungal and nematode community structures due to declines in biomass or abundance whether plants had been removed or not. N enrichment also reduced the diversity of these groups (except for fungi) and the soil C mineralization rate and induced a hump‐shaped response of soil N mineralization. As expected, plant removal decreased the biomass or abundance of soil organisms and C and N mineralization rates due to declines in soil substrates or food resources. Analyses of plant‐removal‐induced changes (ratios of without‐ to with‐plant subplots) showed that micro‐organisms and C and N mineralization rates were not enhanced as N enrichment increased but that nematodes were enhanced as N enrichment increased, indicating that the effects of plant removal on soil organisms and mineralization depended on trophic level and nutrient status. Surprisingly, there was no statistical interaction between N enrichment and plant removal for most variables, indicating that plant‐related inputs did not qualitatively change the effects of N enrichment on soil organisms or mineralization. Structural equation modelling confirmed that changes in soil communities and mineralization rates were more affected by the direct effects of N enrichment (via soil acidification and increased N availability) than by plant‐related indirect effects. Our results provide insight into how future changes in N deposition and vegetation may modify below‐ground communities and processes in grassland ecosystems. 
    more » « less
  2. Exotic invasive plant species alter ecosystems and locally extirpate native plant species, and by doing so alter community structure. Changes in community structure may be particularly important if invaders promote species with certain traits. For example, the positive effects of most invaders on soil fertility may promote species with weedy traits, whether native or not. We examined the effects of two co-occurring Prosopis congeners, the native P. cineraria and the exotic invader P. juliflora, on species identified as “agricultural weeds” and species that were not agricultural weeds in the United Arab Emirates. When compared to plots in the open, P. cineraria canopies were associated with lower richness and density of non-weeds while having no impact on agricultural weed species. In contrast, there was lower richness and densities of non-weeds under canopies of P. juliflora, but higher densities of agricultural weeds than in the open surrounding the canopies. These patterns associated with Prosopis congeners and understory plant community composition might be due to the much higher litter deposition, if litter is inhibitory, and shallow root biomass under P. juliflora, or the different soil properties that corresponded with the two Prosopis canopies. In general, soils contained more nitrogen under P. juliflora than P. cineraria, and both understories were more fertile than soil in the open. Our results suggest that evolutionary history may play a role in how exotic invasive species may select for some traits over others in plant communities, with an exotic invader potentially creating reservoirs of agricultural weeds. 
    more » « less
  3. Thomas Wernberg (Ed.)
    Warming ocean temperatures have been linked to kelp forest declines worldwide, and elevated temperatures can act synergistically with other local stressors to exacerbate kelp loss. The bull kelp Nereocystis luetkeana is the primary canopy‐forming kelp species in the Salish Sea, where it is declining in areas with elevated summer water temperatures and low nutrient concentrations. To determine the interactive effects of these two stressors on microscopic stages of N. luetkeana, we cultured gametophytes and microscopic sporophytes from seven different Salish Sea populations across seven different temperatures (10–22°C) and two nitrogen concentrations. The thermal tolerance of microscopic gametophytes and sporophytes was similar across populations, and high temperatures were more stressful than low nitrogen levels. Additional nitrogen did not improve gametophyte or sporophyte survival at high temperatures. Gametophyte densities were highest between 10 and 16°C and declined sharply at 18°C, and temperatures of 20 and 22°C were lethal. The window for successful sporophyte production was narrower, peaking at 10–14°C. Across all populations, the warmest temperature at which sporophytes were produced was 16 or 18°C, but sporophyte densities were 78% lower at 16°C and 95% lower at 18°C compared to cooler temperatures. In the field, bottom temperatures revealed that the thermal limits of gametophyte growth (18°C) and sporophyte production (16–18°C) were reached during the summer at multiple sites. Prolonged exposure of bull kelp gametophytes to temperatures of 16°C and above could limit reproduction, and therefore recruitment, of adult kelp sporophytes. 
    more » « less
  4. Declining nitrogen (N) availability relative to plant demand, known as N oligotrophication, is a widespread phenomenon that has been particularly well documented in northern hardwood forests of the northeast U.S. It is hypothesized that later fall senescence contributes to this trend by increasing tree resorption of N, resulting in higher carbon:nitrogen ratios (C:N) in litterfall and reduced N availability in soil. To examine the effects of litterfall C:N on soil N cycling, we conducted a litter quality manipulation experiment comparing low C:N and high C:N litter with native litter along an elevation and aspect gradient at Hubbard Brook Experimental Forest, NH, USA. We found that potential net ammonification and mineralization rates were positively correlated with litter N and negatively correlated with litter C:N under high C:N litter, but these relationships were not present under native or low C:N litter. Differences in nitrate pools and net mineralization rates between high- and low-quality litter treatments were greater at colder sites, where native litterfall tends to have lower C:N than at low-elevation sites. Together, these results demonstrate that higher C:N litter and a warming climate may contribute to N oligotrophication through effects on microbially driven N cycling rates in organic soils. 
    more » « less
  5. Abstract In most plant communities, the net effect of nitrogen enrichment is an increase in plant productivity. However, nitrogen enrichment also has been shown to decrease species richness and to acidify soils, each of which may diminish the long‐term impact of nutrient enrichment on productivity. Here we use a long‐term (20 year) grassland plant diversity by nitrogen enrichment experiment in Minnesota, United States (a subexperiment within the BioCON experiment) to quantify the net impacts of nitrogen enrichment on productivity, including its potential indirect effects on productivity via changes in species richness and soil pH over an experimental diversity gradient. Overall, we found that nitrogen enrichment led to an immediate positive increment in productivity, but that this effect became nonsignificant over later years of the experiment, with the difference in productivity between fertilized and unfertilized plots decreasing in proportion to nitrogen addition‐dependent declines in soil pH and losses of plant diversity. The net effect of nitrogen enrichment on productivity could have been 14.5% more on average over 20 years in monocultures if not for nitrogen‐induced decreases in pH and about 28.5% more on average over 20 years in 16 species communities if not for nitrogen‐induced species richness losses. Together, these results suggest that the positive effects of nutrient enrichment on biomass production can diminish in their magnitude over time, especially because of soil acidification in low diversity communities and especially because of plant diversity loss in initially high diversity communities. 
    more » « less