skip to main content


Title: Reintroducing bison results in long-running and resilient increases in grassland diversity
The widespread extirpation of megafauna may have destabilized ecosystems and altered biodiversity globally. Most megafauna extinctions occurred before the modern record, leaving it unclear how their loss impacts current biodiversity. We report the long-term effects of reintroducing plains bison ( Bison bison ) in a tallgrass prairie versus two land uses that commonly occur in many North American grasslands: 1) no grazing and 2) intensive growing-season grazing by domesticated cattle ( Bos taurus ). Compared to ungrazed areas, reintroducing bison increased native plant species richness by 103% at local scales (10 m 2 ) and 86% at the catchment scale. Gains in richness continued for 29 y and were resilient to the most extreme drought in four decades. These gains are now among the largest recorded increases in species richness due to grazing in grasslands globally. Grazing by domestic cattle also increased native plant species richness, but by less than half as much as bison. This study indicates that some ecosystems maintain a latent potential for increased native plant species richness following the reintroduction of native herbivores, which was unmatched by domesticated grazers. Native-grazer gains in richness were resilient to an extreme drought, a pressure likely to become more common under future global environmental change.  more » « less
Award ID(s):
2025849
NSF-PAR ID:
10376248
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
119
Issue:
36
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Societal Impact Statement

    Grasses are significant drivers of fires and are the primary food source for cattle in Madagascar's Central Highlands. However, their extent and importance to animals and people in the past remain poorly understood. Clarifying the history of Malagasy grasslands is necessary for building climate resilient food systems and supporting carbon stores that also conserve biodiversity. We generated chemical data for grasses that grow in open habitats in central Madagascar, which will help improve our understanding of the ecological and economic importance of modern grassy ecosystems, reconstruct the regional history of grasses, and anticipate how vegetation may respond to changing climate and rising atmospheric carbon dioxide levels.

    Summary

    Stable carbon isotope (δ13C) data for Malagasy grasses are needed to establish expected values for C3and C4grasses from particular regions in Madagascar, and possible differences among different grass lineages, or species with different distributions or adaptations. These data, in turn, may help inform how widespread grasses were in the past, and the importance of grasses to endemic and domesticated animals as well as people over time.

    We analysed both δ13C and weight %C:N from 63 Poaceae species that grow in open grassy biomes in Madagascar's Central Highlands and explored how these values relate to multiple variables, including encounter frequency, distribution, lineage, adaptations to grazing and fire and the typical floral assemblage in which each species occurs.

    Of the species sampled, 56 are C4and seven are C3. There are no differences in δ13C or weight %C:N among either C3or C4species with different distributions or adaptations, from different assemblages, or that are frequently or infrequently encountered. However, there are differences in both δ13C and weight %C:N among C4lineages, and the single C3arundinoid (Styppeiochloa hitchcockii) has larger weight %C:N than C3Paniceae.

    Our results provide a foundation for evaluating reliance on C4resources by people, as well as domesticated and endemic animals both today and in the past. We encourage gathering additional comparative data for co‐occurring individual plants from the same open grassy biome localities, as well as other species, habitats and regions in Madagascar.

     
    more » « less
  2. Abstract

    In the midst of an ongoing biodiversity crisis, much research has focused on species losses and their impacts on ecosystem functioning. The functional consequences (ecosystem response) of shifts in communities are shaped not only by changes in species richness, but also by compositional shifts that result from species losses and gains. Species differ in their contribution to ecosystem functioning, so species identity underlies the consequences of species losses and gains on ecosystem functions. Such research is critical to better predict the impact of disturbances on communities and ecosystems. We used the “Community Assembly and the Functioning of Ecosystems” (CAFE) approach, a modification of the Price equation to understand the functional consequences and relative effects of richness and composition changes in small nonvolant mammal and dung beetle communities as a result of two common disturbances in North American prairie restorations, prescribed fire and the reintroduction of large grazing mammals. Previous research in this system has shown dung beetles are critically important decomposers, while small mammals modulate much energy in prairie food webs. We found that dung beetle communities were more responsive to bison reintroduction and prescribed fires than small nonvolant mammals. Dung beetle richness increased after bison reintroduction, with higher dung beetle community biomass resulting from changes in remaining species (context‐dependent component) rather than species turnover (richness components); prescribed fire caused a minor increase in dung beetle biomass for the same reason. For small mammals, bison reintroduction reduced energy transfer through the loss of species, while prescribed fire had little impact on either small mammal richness or energy transfer. The CAFE approach demonstrates how bison reintroduction controls small nonvolant mammal communities by increasing prairie food web complexity, and increases dung beetle populations with possible benefits for soil health through dung mineralization and soil bioturbation. Prescribed fires, however, have little effect on small mammals and dung beetles, suggesting a resilience to fire. These findings illustrate the key role of re‐establishing historical disturbance regimes when restoring endangered prairie ecosystems and their ecological function.

     
    more » « less
  3. Abstract

    Grazing effects on arid and semi‐arid grasslands can be constrained by aridity. Plant functional groups (PFGs) are the most basic component of community structure (CS) and biodiversity & ecosystem function (BEF). They have been suggested as identity‐dependent in quantifying the response to grazing intensity and drought severity. Here, we examine how the relationships among PFGs, CS, BEF, and grazing intensity are driven by climatic drought. We conducted a manipulative experiment with three grazing intensities in 2012 (nondrought year) and 2013 (drought year). We classified 62 herbaceous plants into four functional groups based on their life forms. We used the relative species abundance of PFGs to quantify the effects of grazing and drought, and to explore the mechanisms for the pathway correlations using structural equation models (SEM) among PFGs, CS, and BEF directly or indirectly. Grazers consistently favored the perennial forbs (e.g., palatable or nutritious plants), decreasing the plants’ relative abundance by 23%–38%. Drought decreased the relative abundance of ephemeral plants by 42 ± 13%; and increased perennial forbs by 20 ± 7% and graminoids by 80 ± 31%. SEM confirmed that annuals and biennials had negative correlations with the other three PFGs, with perennial bunchgrasses facilitated by perennial rhizome grass. Moreover, the contributions of grazing to community structure (i.e., canopy height) were 1.6–6.1 times those from drought, whereas drought effect on community species richness was 3.6 times of the grazing treatment. Lastly, the interactive effects of grazing and drought on BEF were greater than either alone; particularly, drought escalated grazing damage on primary production.Synthesis. The responses of PFGs, CS, and BEF to grazing and drought were identity‐dependent, suggesting that grazing and drought regulation of plant functional groups might be a way to shape ecosystem structure and function in grasslands.

     
    more » « less
  4. Abstract

    Harvester ants create habitats along nest rims, which some plants use as refugia. These refugia can enhance ecosystem stability to disturbances like drought and grazing, but their potential role in invasion ecology is not yet tested. Here we examine the effects of drought and grazing on nest-rim refugia of 2 harvester ant species: Pogonomyrmex occidentals and P. rugosus. We selected 4 rangeland sites with high harvester ant nest densities in northern Arizona, USA, with pre-existing grazing exclosures adjacent to heavily grazed habitat. Our objective was to determine whether nest refugia were used by native or exotic plant species for each site and scenario of drought and grazing. We measured vegetation cover on nest surfaces, on nest rims, and at 3 distances (3, 5, and 10 m) from nests. At each site, we sampled 2 treatments (grazed/excluded) during 2 seasons (drought/monsoon). We found that nest rims increased vegetation cover compared with background levels at all sites and in almost all scenarios of treatment and season, indicating that nest rims provide important refugia for plants from drought and cattle grazing. In some cases, plants enhanced on nest rims were native grasses such as blue gramma (Bouteloua gracilis) or forbs such as sunflowers (Helianthus petiolaris). However, nest rims at all sites enhanced exotic species, particularly Russian thistle (Salsola tragus), purslane (Portulaca oleracea), and bull thistle (Cirsium vulgare). These results suggest that harvester ants play important roles in invasion ecology and restoration. We discuss potential mechanisms for why certain plant species use nest-rim refugia and how harvester ant nests contribute to plant community dynamics.

     
    more » « less
  5. Abstract

    Riparian zones are among the most biologically diverse ecosystems in the Intermountain West, USA, and provide valuable ecosystem services, including high rates of biotic productivity, nutrient processing, and carbon storage. Thus, their sustainability is a high priority for land managers. Large ungulates affect composition and structure of riparian/stream ecosystems through herbivory and physical effects, via trailing and trampling. Bison (Bison bison) in Yellowstone National Park (YNP) have been characterized as “ecosystem engineers” because of their demonstrated effects on phenology, aboveground productivity of grasses, and woody vegetation structure. Bison have greatly increased in numbers during the last two decades and spend large periods of time in the broad open floodplains of the Northern Range of the Park, where they are hypothesized to have multiple effects on plant species composition and diversity. We sampled indicators of bison use as well as riparian vegetation composition, diversity, and structure along eight headwater streams within YNP's Northern Range. Total fecal density ranged from 333 to 1833 fecal chips and/or piles/ha, stubble heights ranged from 7 to 49 cm, and streambank disturbance ranged from 9% to 62%. High levels of bison use were positively correlated with exotic species dominance and negatively correlated with species richness, native species diversity, willow (Salixspp.) cover, and wetland species dominance. At three sites, the intensity of bison use exceeded recommended utilization thresholds to avoid degradation of streams and riparian zones on public lands. The influences of large herbivores, principally bison, on vegetation composition and structure suggest the cumulative effects of the current densities on the Northern Range are contributing to biotic impoverishment, representing the loss of ecosystem services that are provided by native riparian plant communities. In addition, contemporary levels of bison use may be exacerbating climate change effects as observed through ungulate‐related shifts in composition toward plant assemblages adapted to warmer and drier conditions. However, the resilience of native riparian vegetation suggests that sites currently heavily utilized by bison would have the potential for recovery with a reduction in pressure by this herbivore.

     
    more » « less