- Award ID(s):
- 2125383
- Publication Date:
- NSF-PAR ID:
- 10376263
- Journal Name:
- eLife
- Volume:
- 11
- ISSN:
- 2050-084X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract This project is funded by the US National Science Foundation (NSF) through their NSF RAPID program under the title “Modeling Corona Spread Using Big Data Analytics.” The project is a joint effort between the Department of Computer & Electrical Engineering and Computer Science at FAU and a research group from LexisNexis Risk Solutions. The novel coronavirus Covid-19 originated in China in early December 2019 and has rapidly spread to many countries around the globe, with the number of confirmed cases increasing every day. Covid-19 is officially a pandemic. It is a novel infection with serious clinical manifestations, including death, and it has reached at least 124 countries and territories. Although the ultimate course and impact of Covid-19 are uncertain, it is not merely possible but likely that the disease will produce enough severe illness to overwhelm the worldwide health care infrastructure. Emerging viral pandemics can place extraordinary and sustained demands on public health and health systems and on providers of essential community services. Modeling the Covid-19 pandemic spread is challenging. But there are data that can be used to project resource demands. Estimates of the reproductive number (R) of SARS-CoV-2 show that at the beginning of the epidemic, each infectedmore »
-
Abstract Global biodiversity is declining at rates faster than at any other point in human history. Experimental manipulations at small spatial scales have demonstrated that communities with fewer species consistently produce less biomass than higher diversity communities. Understanding the consequences of the global extinction crisis for ecosystem functioning requires understanding how local experimental results are likely to change with increasing spatial and temporal scales and from experiments to naturally assembled systems.
Scaling across time and space in a changing world requires baseline predictions. Here, we provide a graphical null model for area scaling of biodiversity–ecosystem functioning relationships using observed macroecological patterns: the species–area curve and the biomass–area curve. We use species–area and biomass–area curves to predict how species richness–biomass relationships are likely to change with increasing sampling extent. We then validate these predictions with data from two naturally assembled ecosystems: a Minnesota savanna and a Panamanian tropical dry forest.
Our graphical null model predicts that biodiversity–ecosystem functioning relationships are scale‐dependent. However, we note two important caveats. First, our results indicate an apparent contradiction between predictions based on measurements in biodiversity–ecosystem functioning experiments and from scaling theory. When ecosystem functioning is measured as per unit area (e.g. biomass per m2), as is commonmore »
Synthesis . This paper provides a simple graphical null model that can be extended to any relationship between biodiversity and any ecosystem functioning across space or time. Furthermore, these predictions provide crucial insights into how and when we may be able to extend results from small‐scale biodiversity experiments to naturally assembled regional and global ecosystems where biodiversity is changing. -
Assisted restoration interventions drive functional recovery of tropical wet forest tree communitiesChoosing appropriate forest restoration interventions is challenging. Natural regeneration can rapidly facilitate forest recovery in many situations. However, barriers such as dispersal limitation and competition with non-native species can require assisted restoration approaches to facilitate plant community recovery. We used a study that has directly compared the outcomes of tropical wet forest restoration interventions across 11 replicate sites in southern Costa Rica. Within this framework, we examined the functional recovery trajectories of recruiting tree sapling communities across a gradient of restoration interventions including low (natural regeneration), intermediate (applied nucleation), and high (plantation) initial resource-investment, which we compared to remnant reference forest. We collated leaf and stem functional traits for tree species that comprised the bulk of recruiting saplings, then determined how community-weighted trait means and functional diversity metrics changed over a decade across treatments. Results show that assisted restoration approaches (applied nucleation, plantation) sped the development of more functionally diverse tree communities, more than tripling the functional richness (FRic) of recruiting communities when compared to natural regeneration. However, functional dispersion (i.e., the trait range of dominant species) was equivalent across interventions, and between 28 and 44% lower than remnant forest, indicating that increases in FRic under assisted restoration were drivenmore »
-
Abstract Understanding the drivers and impacts of spatiotemporal variation in species abundance on community trajectories is key to understanding the factors contributing to ecosystem resilience. Temporal variation in species trajectories across patches can provide compensation for species loss and can influence successional patterns. However, little is known about the underlying mechanisms that lead to patterns of species or spatial compensation and how those patterns may be mediated by consumer–resource relationships. Here we describe an experiment testing whether habitat attributes (e.g., structural complexity and spatial heterogeneity) mediate the effects of herbivory on tropical marine macroalgal communities by reducing accessibility and detectability, respectively, leading to variable trajectories among algal species at community (within patch) and metacommunity (i.e., among patch) scales. Reduced accessibility (greater habitat complexity) decreased the effects of herbivory (i.e., depressed consumption rate, increased algal species richness), and both accessibility and detectability (spatial heterogeneity) influenced algal community structure. Moreover, decreased accessibility at the community scale and a mosaic of accessibility at the metacommunity scale led to variation in community assembly. We suggest that habitat attributes can be important influencers of consumer–resource interactions on coral reefs, which in turn can increase species diversity, promote species succession, and enhance stability in algal metacommunities.
-
Abstract Understanding the distribution of biodiversity across the Earth is one of the most challenging questions in biology. Much research has been directed at explaining the species latitudinal pattern showing that communities are richer in tropical areas; however, despite decades of research, a general consensus has not yet emerged. In addition, global biodiversity patterns are being rapidly altered by human activities. Here, we aim to describe large‐scale patterns of species richness and diversity in terrestrial vertebrate scavenger (carrion‐consuming) assemblages, which provide key ecosystem functions and services. We used a worldwide dataset comprising 43 sites, where vertebrate scavenger assemblages were identified using 2,485 carcasses monitored between 1991 and 2018. First, we evaluated how scavenger richness (number of species) and diversity (Shannon diversity index) varied among seasons (cold vs. warm, wet vs. dry). Then, we studied the potential effects of human impact and a set of macroecological variables related to climatic conditions on the scavenger assemblages. Vertebrate scavenger richness ranged from species‐poor to species rich assemblages (4–30 species). Both scavenger richness and diversity also showed some seasonal variation. However, in general, climatic variables did not drive latitudinal patterns, as scavenger richness and diversity were not affected by temperature or rainfall. Rainfall seasonalitymore »