skip to main content


Title: The Sol y Agua RPP: A Bilingual and Culturally Responsive Approach to Introduce Computational Thinking in Middle School
The Sol y Agua researcher-practitioner partnership (RPP) project introduces computational thinking (CT) in the middle school of the Paso del Norte region using a linguistically and culturally responsive approach. At the core of this RPP is the Sol y Agua game, a bilingual, culturally- and environmentally-relevant educational game developed at the University of Texas at El Paso to introduce computing and STEM topics in middle school. The Sol y Agua RPP includes some critical areas for a successful RPP, including partnership building and the focus on a linguistically and culturally-responsive pedagogy and content development. We describe our approach to build a sustainable RPP, incorporating bilingual pedagogy, and integrating CT through a culturally- and environmentally-relevant game as part of our RPP experience.  more » « less
Award ID(s):
1923599
NSF-PAR ID:
10376513
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Association for Computing Machinery
Date Published:
Journal Name:
Proceedings of the 53rd ACM Technical Symposium on Computer Science Education V. 2 (SIGCSE 2022)
Page Range / eLocation ID:
1096 to 1096
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. There is a national need to increase the number of minority students entering STEM fields with essential computing skills. To increase minority students’ interest and engagement in computing, a researcher-practitioner partnership between the University of Texas at El Paso and the El Paso Independent School District, developed and implemented a culturally and linguistically responsive curriculum and pedagogy to introduce computational thinking (CT) in two middle schools across different subject areas in a borderland region. The curriculum leveraged the Sol y Agua game – a bilingual, culturally-responsive game designed to engage students of this region in CT. This paper describes the process and initial findings of this project. The quantitative data from in-game analyses show that students utilized the language change feature to switch from English to Spanish more frequently than the other way – highlighting the need for educational platforms relatable to students through language, environment, and cultural context. Analyses of the qualitative data indicate that while teachers/team members understood CT and translanguaging concepts and taught lesson units that provided opportunities to practice both, CT and translanguaging were largely implicit in the curriculum. In collaborative analyses of these patterns, teachers described additional supports that would help them to make CT instruction and translanguaging strategies more explicit in the content and pedagogy, highlighting the need for systematic, targeted integration of these concepts. 
    more » « less
  2. CSforALL & SageFox Consulting Group (Ed.)
    Research-practitioner partnership (RPP) projects using approaches such as design-based implementation research (DBIR), seek to build organizational infrastructure to develop, implement, and sustain educational innovation [19]. Infrastructure consists of the practices and objects that support educational practice. Infrastructure constitutes human and material resources and structures that support joint work [18,29]. Although RPP literature has identified co-design as an infrastructure-building approach, to the best of our knowledge, specific techniques for managing co-design and other infrastructure building practices are still lacking [9,18,23]. Without such tools, RPP partners' varied backgrounds, workplace norms, and priorities can produce behaviors that may be normal in the context of a single organization but can impede communication, resource access, and innovation implementation in a collaborative context. The NSF-funded Computer Science Pathways RPP (CS Pathways) project's DBIR approach uses co-design of a culturally responsive middle school CS curriculum to develop infrastructure for providing high-quality CS education across three urban school districts. The curriculum focuses on developing mobile apps for social good and will be taught by teachers with varied CS experience in varied classroom contexts (e.g., civics, science). The purpose of this workshop paper is to demonstrate a technique, namely Manager Tools One-on-one meetings [15], adapted by CS Pathways partners to manage the co-design process. O3s have six features: they are frequent; scheduled; 15 to 30 minutes in duration; held with all participants working on a specified project; semi-structured; and documented by the manager or researcher. This workshop paper describes how to use O3s to engage teachers and researchers in developing collaborative infrastructure to promote shared exploration of feedback and build and sustain partnerships. 
    more » « less
  3. Oftentimes engineering design tasks are thought of as acultural and devoid of community inclusion and values. However, engineering design is inherently a cultural endeavor. Problems needing engineering solutions or design thinking are situated in a specific community and need community solutions. This work in progress paper describes initial efforts from a project to help elementary and middle school teachers create culturally relevant engineering design tasks for implementation in their classrooms. To integrate best practices for culturally relevant pedagogy, the engineering design framework developed by UTeach Engineering was adapted to specifically address community needs and cultural values. Changes to the framework also include culturally relevant instructional strategies for classroom implementation. To situate the engineering design steps within a culturally relevant framework questions involving communities and students’ cultural needs, values, and expectations were posed in each stage of the design process. A water filtration engineering design task was situated in the cultural concept of “Mni Wiconi” (Water is life in the Dakota language). This was taught in a summer professional development workshop for a cohort of elementary and middle school teachers, in rural North Dakota, with school districts comprised of large Native American student populations. Teachers adapted this design task for their individual classrooms and content areas (science, math, social studies, ELA) and implemented it in their classrooms in the fall of 2021. Additional support for teachers was provided with fall workshop days aimed at helping them with the facilitation of a culturally relevant engineering task. To integrate culturally relevant teaching and good engineering design tasks, the North Dakota Department of Public Instruction’s Native American Essential Understandings Teachings of our Elder’s website was used. This allowed teachers and students to have firsthand knowledge of how various science and engineering concepts are framed within the indigenous community. Professional development focused on how to situate culturally responsive teaching in engineering design. For example, in one of the school districts the water filtration task was related to increased pollution of a nearby lake which holds significant importance for the local Tribal Nation. In addition to being able to visibly witness the demand for cleaner water, the book “We are Water Protectors” written by Carole Lindstrom, was used to provide cultural grounding for the Identify and Describe stages of the engineering design framework. Case studies of how teachers incorporated the water filtration design task into their lesson plans are presented along with their suggestions on how to improve classroom implementation. Future work in the program includes teachers and their students developing engineering design tasks situated in their own communities and cultures. 
    more » « less
  4. Background/Context:

    Computer programming is rarely accessible to K–12 students, especially for those from culturally and linguistically diverse backgrounds. Middle school age is a transitioning time when adolescents are more likely to make long-term decisions regarding their academic choices and interests. Having access to productive and positive knowledge and experiences in computer programming can grant them opportunities to realize their abilities and potential in this field.

    Purpose/Focus of Study:

    This study focuses on the exploration of the kind of relationship that bilingual Latinx students developed with themselves and computer programming and mathematics (CPM) practices through their participation in a CPM after-school program, first as students and then as cofacilitators teaching CPM practices to other middle school peers.

    Setting:

    An after-school program, Advancing Out-of-School Learning in Mathematics and Engineering (AOLME), was held at two middle schools located in rural and urban areas in the Southwest. It was designed to support an inclusive cultural environment that nurtured students’ opportunities to learn CPM practices through the inclusion of languages (Spanish and English), tasks, and participants congruent to students in the program. Students learned how to represent, design, and program digital images and videos using a sequence of 2D arrays of hexadecimal numbers with Python on a Raspberry Pi computer. The six bilingual cofacilitators attended Levels 1 and 2 as students and were offered the opportunity to participate as cofacilitators in the next implementation of Level 1.

    Research Design:

    This longitudinal case study focused on analyzing the experiences and shifts (if any) of students who participated as cofacilitators in AOLME. Their narratives were analyzed collectively, and our analysis describes the experiences of the cofacilitators as a single case study (with embedded units) of what it means to be a bilingual cofacilitator in AOLME. Data included individual exit interviews of the six cofacilitators and their focus groups (30–45 minutes each), an adapted 20-item CPM attitude 5-point Likert scale, and self-report from each of them. Results from attitude scales revealed cofacilitators’ greater initial and posterior connections to CPM practices. The self-reports on CPM included two number lines (0–10) for before and after AOLME for students to self-assess their liking and knowledge of CPM. The numbers were used as interview prompts to converse with students about experiences. The interview data were analyzed qualitatively and coded through a contrast-comparative process regarding students’ description of themselves, their experiences in the program, and their perception of and relationship toward CPM practices.

    Findings:

    Findings indicated that students had continued/increased motivation and confidence in CPM as they engaged in a journey as cofacilitators, described through two thematic categories: (a) shifting views by personally connecting to CPM, and (b) affirming CPM practices through teaching. The shift in connecting to CPM practices evolved as students argued that they found a new way of learning mathematics, in that they used mathematics as a tool to create videos and images that they programmed by using Python while making sense of the process bilingually (Spanish and English). This mathematics was viewed by students as high level, which in turned helped students gain self-confidence in CPM practices. Additionally, students affirmed their knowledge and confidence in CPM practices by teaching them to others, a process in which they had to mediate beyond the understanding of CPM practices. They came up with new ways of explaining CPM practices bilingually to their peers. In this new role, cofacilitators considered the topic and language, and promoted a communal support among the peers they worked with.

    Conclusions/Recommendations:

    Bilingual middle school students can not only program, but also teach bilingually and embrace new roles with nurturing support. Schools can promote new student roles, which can yield new goals and identities. There is a great need to redesign the school mathematics curriculum as a discipline that teenagers can use and connect with by creating and finding things they care about. In this way, school mathematics can support a closer “fit” with students’ identification with the world of mathematics. Cofacilitators learned more about CPM practices by teaching them, extending beyond what was given to them, and constructing new goals that were in line with a sophisticated knowledge and shifts in the practice. Assigned responsibility in a new role can strengthen students’ self-image, agency, and ways of relating to mathematics.

     
    more » « less
  5. Background/Context: After-school programs that focus on integrating computer programming and mathematics in authentic environments are seldomly accessible to students from culturally and linguistically diverse backgrounds, particularly bilingual Latina students in rural contexts. Providing a context that broadens Latina students’ participation in mathematics and computer programming requires educators to carefully examine how verbal and nonverbal language is used to interact and to position students as they learn new concepts in middle school. This is also an important stage for adolescents because they are likely to make decisions about their future careers in STEM. Having access to discourse and teaching practices that invite students to participate in mathematics and computer programming affords them opportunities to engage with these fields. Purpose/Focus of Study: This case study analyzes how small-group interactions mediated the positionings of Cindy, a bilingual Latina, as she learned binary numbers in an after-school program that integrated computer programming and mathematics (CPM). Setting: The Advancing Out-of-School Learning in Mathematics and Engineering (AOLME) program was held in a rural bilingual (Spanish and English) middle school in the Southwest. The after-school program was designed to provide experiences for primarily Latinx students to learn how to integrate mathematics with computer programming using Raspberry Pi and Python as a platform. Our case study explores how Cindy was positioned as she interacted with two undergraduate engineering students who served as facilitators while learning binary numbers with a group of three middle school students. Research Design: This single intrinsic case focused on exploring how small-group interactions among four students mediated Cindy’s positionings as she learned binary numbers through her participation in AOLME. Data sources included twelve 90-minute video sessions and Cindy’s journal and curriculum binder. Video logs were created, and transcripts were coded to describe verbal and nonverbal interactions among the facilitators and Cindy. Analysis of select episodes was conducted using systemic functional linguistics (SFL), specifically language modality, to identify how positioning took place. These episodes and positioning analysis describe how Cindy, with others, navigated the process of learning binary numbers under the stereotype that female students are not as good at mathematics as male students. Findings: From our analysis, three themes that emerged from the data portray Cindy’s experiences learning binary numbers. The major themes are: (1) Cindy’s struggle to reveal her understanding of binary numbers in a competitive context, (2) Cindy’s use of “fake it until you make it” to hide her cognitive dissonance, and (3) the use of Spanish and peers’ support to resolve Cindy’s understanding of binary numbers. The positioning patterns observed help us learn how, when Cindy’s bilingualism was viewed and promoted as an asset, this social context worked as a generative axis that addressed the challenges of learning binary numbers. The contrasting episodes highlight the facilitators’ productive teaching strategies and relations that nurtured Cindy’s social and intellectual participation in CPM. Conclusions/Recommendations: Cindy’s case demonstrates how the facilitator’s teaching, and participants’ interactions and discourse practices contributed to her qualitatively different positionings while she learned binary numbers, and how she persevered in this process. Analysis of communication acts supported our understanding of how Cindy’s positionings underpinned the discourse; how the facilitators’ and students’ discourse formed, shaped, or shifted Cindy’s positioning; and how discourse was larger than gender storylines that went beyond classroom interactions. Cindy’s case reveals the danger of placing students in “struggle” instead of a “productive struggle.” The findings illustrated that when Cindy was placed in struggle when confronting responding moves by the facilitator, her “safe” reaction was hiding and avoiding. In contrast, we also learned about the importance of empathetic, nurturing supporting responses that encourage students’ productive struggle to do better. We invite instructors to notice students’ hiding or avoiding and consider Cindy’s case. Furthermore, we recommend that teachers notice their choice of language because this is important in terms of positioning students. We also highlight Cindy’s agency as she chose to take up her friend’s suggestion to “fake it” rather than give up. 
    more » « less