skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Seismic Characteristics of the Eastern North American Crust With Ps Converted Waves: Terrane Accretion and Modification of Continental Crust
Abstract The impact of past tectonic events on the formation and modification of continental lithosphere remains as an open question of fundamental importance. Eastern North America provides a complete record of supercontinent assembly and breakup over the past 1.3 Ga, serving as a natural laboratory for our understanding of continental crust and mantle lithosphere and for integrating geologic and geophysical observations. In this study, we used teleseismic Ps receiver functions to image the detailed distribution of crustal thickness beneath eastern North America. The radial‐component receiver functions were calculated from seismic waveforms recorded by a total of 659 broadband stations during 2010–2017, yielding a high‐resolution image of Moho depth distribution. The depths of the Moho and intracrustal layers vary within and across the major tectonic units. Specifically, there are distinct differences in crustal thickness between the northern and southern Grenville Province. A dipping intracrustal feature can be seen within the central Grenville Province, with the depth increasing eastward from 5 to 27 km. The Moho depth decreases southeastward across the Grenville‐Appalachian boundary, with a sharp Moho offset of up to 12–15 km in the central segment and a more gradual variation to the north and south. The thickness difference between the southern and northern Grenville‐aged crusts suggests different tectonic and/or exhumation histories during and after the Grenville Orogeny. The low‐angle eastward dipping crustal feature is interpreted to be a Grenville‐aged collisional structure. Differences in the steepness of the Moho offset along the strike of Appalachians probably reflect variation of the steepness of the subsurface boundary between Laurentia and accreted terranes with different intensities of postorogenic modification. The observed spatial relation between the geologically defined tectonic boundaries and crustal thickness variations provides new constraints on the depth extent of the tectonic units within the crust.  more » « less
Award ID(s):
1736167
PAR ID:
10376538
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Solid Earth
Volume:
125
Issue:
5
ISSN:
2169-9313
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The composition of the lower continental crust, as well as its formation, growth, and evolution, remains a fundamental subject to be understood. In this study, we carry out a comparative and integrative analysis of seismic tomographic models, teleseismic receiver function results, and Airy isostasy in order to investigate the properties of the lower continental crust in eastern North America. We extract the depths for Vs of 4.0 km/s, 4.2 km/s, and 4.5 km/s from three selected tomographic models and calculate the differences between the Vs depth contours and the Moho depth defined by receiver functions. We then calculate the Airy isostatic Moho depth and its misfit with the receiver‐function‐defined Moho. Our analysis reveals three key features: (a) the deepening of the Vs depth contours and the strong negative Airy misfit within the U.S. Grenville Province; (b) a seismically faster‐than‐average and compositionally denser‐than‐average lowermost crust in the eastern North American Craton and the Grenville Province; and (c) the thickest, seismically fastest, and densest lowermost crust beneath the southern Grenville Front, the southern Grenville‐Appalachian boundary, and the U.S.‐Canada national border. We suggest that the lower crust of the craton and the Grenville Province has densified through garnet‐forming metamorphic reactions during and after orogenesis, contributing to the widely distributed fast‐velocity layer. The lower crust beneath the tectonic boundaries could have experienced more extensive garnet growth during orogenesis and emplacement of mafic magma. This study provides new constraints on the seismic and compositional properties of the lower crust in eastern North America. 
    more » « less
  2. Abstract The northwestern part of North America has recorded multiple tectonic events, such as terrane accretion, strike‐slip motion, and subduction of the Pacific and Yakutat plates, providing an iconic setting to investigate the tectonic evolution of the continental crust. In this study we analyze the receiver functions at seismic stations deployed during 1999–2022 to estimate the crustal thickness, as well as possible slab signature, in Alaska and northwestern Canada. The Moho signal can be clearly detected within the continental region. Specifically, in northwestern Canada, the thickest crust is observed beneath the Cordilleran Deformation Front, which marks the structural boundary between the North American Craton and the North American Margin. We observe a few distinct offsets in the Moho depth located both within the tectonic units and approximately across the major faults between the tectonic units. We provide a first‐order estimate of the depth gradient of the Moho offsets based on the horizontal distance of the two closest seismic stations across the offsets. We propose that the Moho offsets reflect the cumulative impact of the accretionary orogenies and post‐orogenic tectonic events on crustal modification. The continental Moho signal is weak or obscure in Aleutian and southcentral Alaska, and the oceanic Moho within the subducting plates is likely detected. This study provides new seismic insights into understanding the impacts of the tectonic events on continental formation and evolution. 
    more » « less
  3. Abstract The crust and upper mantle beneath the New England Appalachians exhibit a large offset of the Moho across the boundary between Laurentia and accreted terranes and several dipping discontinuities, which reflect Paleozoic or younger tectonic movements. We apply scattered wavefield migration to the SEISConn array deployed across northern Connecticut and obtain insights not previously available from receiver function studies. We resolve a doubled Moho at a previously imaged Moho offset, which may reflect westward thrusting of rifted Grenville crust. The migration image suggests laterally variable velocity contrasts across the Moho, perhaps reflecting mafic underplating during continental rifting. A west‐dipping feature in the lithospheric mantle is further constrained to have a slab‐like geometry, representing a relict slab subducted during an Appalachian orogenic event. Localized low seismic velocities in the upper mantle beneath the eastern portion of the array may indicate that the Northern Appalachian Anomaly extends relatively far to the south. 
    more » « less
  4. Abstract Southern New England exhibits diverse geologic features resulting from past tectonic events. These include Proterozoic and early Paleozoic Laurentian units in the west, several Gondwana‐derived terranes that accreted during the Paleozoic in the east, and the Mesozoic Hartford Basin in the central part of the region. The Seismic Experiment for Imaging Structure beneath Connecticut (SEISConn) project involved the deployment of a dense array of 15 broadband seismometers across northern Connecticut to investigate the architecture of lithospheric structures beneath this region and interpret how they were created and modified by past tectonic events in the context of surface geology. We carried out P‐to‐S receiver function analysis on SEISConn data, including both single‐station analysis and common conversion point (CCP) stacking. Our images show that the westernmost part of Connecticut has a much deeper Moho than central and eastern Connecticut. The lateral transition is a well‐defined, ∼15 km step‐like offset of the Moho over a ∼20 km horizontal distance. The Moho step appears near the surface boundary between the Laurentian margin and the Gondwana‐derived Moretown terrane. Possible models for its formation include Ordovician underthrusting of Laurentia and/or modification by younger tectonic events. Other prominent features include a strong positive velocity gradient (PVG) beneath the Hartford basin corresponding to the bottom of the sedimentary units, several west‐dipping PVGs in the crust and mantle lithosphere that may correspond to relict slabs or shear zones from past subduction episodes, and a negative velocity gradient (NVG) that may correspond to the base of the lithosphere. 
    more » « less
  5. Abstract Lithospheric layering contains critical information about continental formation and evolution. However, discrepancies on the depth distributions of lithospheric layers have significantly limited our understanding of possible tectonic connections among the layers. Here, we construct a high‐resolution shear velocity model of eastern North America using full‐wave ambient noise simulation and inversion by integrating onshore and offshore seismic datasets. Our new model reveals large lateral variations of lithosphere thickness approximately across the major tectonic boundaries, strong low‐velocity anomalies underlying the thinner lithosphere, and multiple low‐velocity layers within the continental lithosphere. We suggest that the present mantle lithosphere beneath eastern North America was formed and modified through multiple stages of tectonic processes, among which metasomatism may have significantly contributed to the observed intralithospheric low‐velocity layers. The sharp thickness variation of lithosphere promoted edge‐driven mantle convection, which has been consequently modifying the overlying mantle lithosphere and further sharpening the gradient of lithosphere thickness 
    more » « less