Drop impact causes severe surface erosion, dictating many important natural, environmental and engineering processes and calling for substantial prevention and preservation efforts. Nevertheless, despite extensive studies on the kinematic features of impacting drops over the last two decades, the dynamic process that leads to the drop-impact erosion is still far from clear. Here, we develop a method of high-speed stress microscopy, which measures the key dynamic properties of drop impact responsible for erosion, i.e., the shear stress and pressure distributions of impacting drops, with unprecedented spatiotemporal resolutions. Our experiments reveal the fast propagation of self-similar noncentral stress maxima underneath impacting drops and quantify the shear force on impacted substrates. Moreover, we examine the deformation of elastic substrates under impact and uncover impact-induced surface shock waves. Our study opens the door for quantitative measurements of the impact stress of liquid drops and sheds light on the origin of low-speed drop-impact erosion.
Impacting drops are ubiquitous and the corresponding impact force is their most studied dynamic quantity. However, impact forces arising from collisions with curved surfaces are understudied. In this study, we impact small cups with falling drops across drop Reynolds number 2975–12 800, isolating five dominant parameters influencing impact force: drop height and diameter, surface curvature and wettability, and impact eccentricity. These parameters are effectively continuous in their domain and have stochastic variability. The unpredictable dynamics of the system incentivize the implementation of tools that can unearth relationships between parameters and make predictions about impact force for parameter values for which there is not explicit experimental data. We predict force due to the impacting drop in a concave target using an ensemble learning algorithm comprised of four base algorithms: a random forest regressor, k-nearest neighbor, a gradient boosting regressor, and a multi-layer perceptron. We train and test our algorithm with original experimental data comprising 387 total trials using four cup radii with two wetting conditions each. Our approach permits the determination of relative importance of the input features in producing impact force and force predictions which can be compared to scaling relations modified from those for flat targets. Algorithmic predictions indicate that deformation of the drop and surface wettability, often neglected in scaling for impact force on flat surfaces, are important for concave targets. Finally, our approach provides another opportunity for the application of machine learning to characterize complex systems' fluid mechanics for which experimental variables are numerous and vary independently.
more » « less- PAR ID:
- 10376734
- Publisher / Repository:
- American Institute of Physics
- Date Published:
- Journal Name:
- Physics of Fluids
- Volume:
- 34
- Issue:
- 10
- ISSN:
- 1070-6631
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
In this paper, we numerically investigate drop impact on a micro-well substrate to understand the phenomena of non-wettability. The simulation is carried out by solving three-dimensional incompressible Navier–Stokes equations using a density projection method and an adaptive grid refinement algorithm. A very sharp interface reconstruction algorithm, known as the moment-of-fluid method, is utilized to identify the multi-materials and multi-phases present in the computation domain. Our simulations predicted that a micro-well with a deep cavity can significantly reduce a solid–liquid contact in the event of drop impact. The results from the drop impact on the micro-well substrate are compared with results from drop impact on a flat substrate. Significant differences are observed between these two cases in terms of wetted area, spreading ratio, and kinetic energy. Our simulation shows that under the same conditions, a drop is more apt to jump from a micro-well substrate than from a flat surface, resulting in smaller wetted area and shorter contact time. Based on the simulation results, we draw a drop jumping region map. The micro-well substrate has a larger region than the flat surface substrate. Finally, we present a comparative analysis between a flat substrate and a substrate constructed with a dense array of micro-wells and, therefore, show that the array of micro-wells outperforms the smooth substrate with regard to non-wettability and drop wicking capability.more » « less
-
In nature, high-speed rain drops often impact and spread on curved surfaces, e.g., leaves and animal bodies. Although a drop's impact on a surface is a traditional topic for industrial applications, drop-impact dynamics on curved surfaces are less known. In the present study, we examine the time-dependent spreading dynamics of a drop onto a curved hydrophobic surface. We also observed that a drop on a curved surface spreads farther than one on a flat surface. To further understand the spreading dynamics, a new analytical model is developed based on volume conservation and temporal energy balance. This model converges to previous models at the early stage and the final stage of droplet impact. We compared the new model with measured spreading lengths on various curved surfaces and impact speeds, which resulted in good agreement.more » « less
-
Experimental observations of drops of water with aniline dye softly located or impacting onto balsa wood substrates were used to elucidate the effect of an in-plane electric field (at a high voltage of 10 kV applied) on drop behavior. The top and side views were recorded simultaneously. The short-term recordings (on the scale of a few ms) demonstrated a slight effect of the applied in-plane electric field. In some trials, a greater number of finger-like structures were observed along the drop rim compared to the trials without voltage applied. These fingers developed during the advancing motion of the drop rim. The long-term recording (on the scale of ∼10 s) was used to evaluate the wettability-driven increase in the area-equivalent radius of the wetted area. These substrates had grooves in the inter-electrode or the cross-field directions. The groove directions affected the wettability-driven spreading and imbibition. The wettability-driven spreading in the long term was a much more significant effect than the effect of the electric field, because the imbibition significantly diminished the drop part above the porous surface, which diminished, in turn, the electric Maxwell stresses, which could stretch the drop. A simplified analytical model was developed to measure the moisture transport coefficient responsible for liquid imbibition in these experiments. Furthermore, the phase-field modeling of drops on balsa was used to illustrate how a change in the contact angle from hydrophobic to hydrophilic triggers drop imbibition into balsa wood.more » « less
-
Electrowetting and wettability-driven spreading of liquids on porous and nonporous substrates was investigated using impact of drops of epoxy resin, epoxy hardener, and epoxy resin and hardener, as well as silicone and turpentine oils with oil-soluble aniline dyes onto balsa wood and polypropylene surfaces. The experimental results revealed that the electric field stretched drops of epoxy resin, epoxy hardener, and epoxy resin and hardener after impact on polypropylene substrate in the long-term. The spreading of drops of epoxy resin and turpentine oil with dyes after impact onto porous balsa wood under the action of a 10 kV applied voltage was relatively weak. In addition, the measured footprint areas corresponding to drops of epoxy resin, epoxy hardener, and epoxy resin and hardener demonstrated a significant increase in the wetted areas driven by the applied voltage of 10 kV on polypropylene substrate, whereas on balsa wood, the footprint is practically unaffected by the electric field. Furthermore, it was determined that surface wettability was the main mechanism of spreading of epoxy resin, as well as silicone and turpentine oils with aniline dyes on porous balsa without the electric field applied. On the other hand, insufficient concentration of ions and counterions in silicone oil was responsible for the absence of electrohydrodynamic effects after impact of such drops onto porous balsa substrate subjected to high potentials of 7 and 10 kV. Hence, wettability-driven spreading with imbibition on balsa wood was the only reason for an increase in the wetted area in the case of silicone oil.