skip to main content


Title: Achieving Transparency Report Privacy in Linear Time
An accountable algorithmic transparency report (ATR) should ideally investigate (a) transparency of the underlying algorithm, and (b) fairness of the algorithmic decisions, and at the same time preserve data subjects’ privacy . However, a provably formal study of the impact to data subjects’ privacy caused by the utility of releasing an ATR (that investigates transparency and fairness), has yet to be addressed in the literature. The far-fetched benefit of such a study lies in the methodical characterization of privacy-utility trade-offs for release of ATRs in public, and their consequential application-specific impact on the dimensions of society, politics, and economics. In this paper, we first investigate and demonstrate potential privacy hazards brought on by the deployment of transparency and fairness measures in released ATRs. To preserve data subjects’ privacy, we then propose a linear-time optimal-privacy scheme , built upon standard linear fractional programming (LFP) theory, for announcing ATRs, subject to constraints controlling the tolerance of privacy perturbation on the utility of transparency schemes. Subsequently, we quantify the privacy-utility trade-offs induced by our scheme, and analyze the impact of privacy perturbation on fairness measures in ATRs. To the best of our knowledge, this is the first analytical work that simultaneously addresses trade-offs between the triad of privacy, utility, and fairness, applicable to algorithmic transparency reports.  more » « less
Award ID(s):
1816887
NSF-PAR ID:
10376767
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Data and Information Quality
Volume:
14
Issue:
2
ISSN:
1936-1955
Page Range / eLocation ID:
1 to 56
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Recently, there have been increasing calls for computer science curricula to complement existing technical training with topics related to Fairness, Accountability, Transparency and Ethics (FATE). In this paper, we present Value Cards, an educational toolkit to inform students and practitioners the social impacts of different machine learning models via deliberation. This paper presents an early use of our approach in a college-level computer science course. Through an in-class activity, we report empirical data for the initial effectiveness of our approach. Our results suggest that the use of the Value Cards toolkit can improve students' understanding of both the technical definitions and trade-offs of performance metrics and apply them in real-world contexts, help them recognize the significance of considering diverse social values in the development and deployment of algorithmic systems, and enable them to communicate, negotiate and synthesize the perspectives of diverse stakeholders. Our study also demonstrates a number of caveats we need to consider when using the different variants of the Value Cards toolkit. Finally, we discuss the challenges as well as future applications of our approach. 
    more » « less
  2. null (Ed.)
    Spam phone calls have been rapidly growing from nuisance to an increasingly effective scam delivery tool. To counter this increasingly successful attack vector, a number of commercial smartphone apps that promise to block spam phone calls have appeared on app stores, and are now used by hundreds of thousands or even millions of users. However, following a business model similar to some online social network services, these apps often collect call records or other potentially sensitive information from users’ phones with little or no formal privacy guarantees. In this paper, we study whether it is possible to build a practical collaborative phone blacklisting system that makes use of local differential privacy (LDP) mechanisms to provide clear privacy guarantees. We analyze the challenges and trade-offs related to using LDP, evaluate our LDP-based system on real-world user-reported call records collected by the FTC, and show that it is possible to learn a phone blacklist using a reasonable overall privacy budget and at the same time preserve users’ privacy while maintaining utility for the learned blacklist. 
    more » « less
  3. null (Ed.)
    While real-world decisions involve many competing objectives, algorithmic decisions are often evaluated with a single objective function. In this paper, we study algorithmic policies which explicitly trade off between a private objective (such as profit) and a public objective (such as social welfare). We analyze a natural class of policies which trace an empirical Pareto frontier based on learned scores, and focus on how such decisions can be made in noisy or data-limited regimes. Our theoretical results characterize the optimal strategies in this class, bound the Pareto errors due to inaccuracies in the scores, and show an equivalence between optimal strategies and a rich class of fairness-constrained profit-maximizing policies. We then present empirical results in two different contexts — online content recommendation and sustainable abalone fisheries — to underscore the generality of our approach to a wide range of practical decisions. Taken together, these results shed light on inherent trade-offs in using machine learning for decisions that impact social welfare. 
    more » « less
  4. null (Ed.)
    While real-world decisions involve many competing objectives, algorithmic decisions are often evaluated with a single objective function. In this paper, we study algorithmic policies which explicitly trade off between a private objective (such as profit) and a public objective (such as social welfare). We analyze a natural class of policies which trace an empirical Pareto frontier based on learned scores, and focus on how such decisions can be made in noisy or data-limited regimes. Our theoretical results characterize the optimal strategies in this class, bound the Pareto errors due to inaccuracies in the scores, and show an equivalence between optimal strategies and a rich class of fairness-constrained profit-maximizing policies. We then present empirical results in two different contexts — online content recommendation and sustainable abalone fisheries — to underscore the generality of our approach to a wide range of practical decisions. Taken together, these results shed light on inherent trade-offs in using machine learning for decisions that impact social welfare. 
    more » « less
  5. Many applications of representation learning, such as privacy preservation, algorithmic fairness, and domain adaptation, desire explicit control over semantic information being discarded. This goal is formulated as satisfying two objectives: maximizing utility for predicting a target attribute while simultaneously being invariant (independent) to a known semantic attribute. Solutions to invariant representation learning (IRepL) problems lead to a trade-off between utility and invariance when they are competing. While existing works study bounds on this trade-off, two questions remain outstanding: 1) What is the exact trade-off between utility and invariance? and 2) What are the encoders (mapping the data to a representation) that achieve the trade-off, and how can we estimate it from training data? This paper addresses these questions for IRepLs in reproducing kernel Hilbert spaces (RKHS)s. Under the assumption that the distribution of a low-dimensional projection of high-dimensional data is approximately normal, we derive a closed-form solution for the global optima of the underlying optimization problem for encoders in RKHSs. This yields closed formulae for a near-optimal trade-off, corresponding optimal representation dimensionality, and the corresponding encoder(s). We also numerically quantify the trade-off on representative problems and compare them to those achieved by baseline IRepL algorithms. 
    more » « less