null
(Ed.)
Federated learning allows multiple users to collaboratively train a shared classifica- tion model while preserving data privacy. This approach, where model updates are aggregated by a central server, was shown to be vulnerable to poisoning backdoor attacks: a malicious user can alter the shared model to arbitrarily classify specific inputs from a given class. In this paper, we analyze the effects of backdoor attacks on federated meta-learning, where users train a model that can be adapted to dif- ferent sets of output classes using only a few examples. While the ability to adapt could, in principle, make federated learning frameworks more robust to backdoor attacks (when new training examples are benign), we find that even 1-shot attacks can be very successful and persist after additional training. To address these vulner- abilities, we propose a defense mechanism inspired by matching networks, where the class of an input is predicted from the similarity of its features with a support set of labeled examples. By removing the decision logic from the model shared with the federation, success and persistence of backdoor attacks are greatly reduced.
more »
« less