skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Reply to comments on “Identifying mitigation strategies for COVID-19 superspreading on flights using models that account for passenger movement”
Award ID(s):
1931483
PAR ID:
10376775
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Travel Medicine and Infectious Disease
ISSN:
1477-8939
Page Range / eLocation ID:
102453
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this letter, we propose an epidemic model over temporal networks that explicitly encapsulates two different control actions. We develop our model within the theoretical framework of activity driven networks (ADNs), which have emerged as a valuable tool to capture the complexity of dynamical processes on networks, coevolving at a comparable time scale to the temporal network formation. Specifically, we complement a susceptible–infected–susceptible epidemic model with features that are typical of nonpharmaceutical interventions in public health policies: i) actions to promote awareness, which induce people to adopt self-protective behaviors, and ii) confinement policies to reduce the social activity of infected individuals. In the thermodynamic limit of large-scale populations, we use a mean-field approach to analytically derive the epidemic threshold, which offers viable insight to devise containment actions at the early stages of the outbreak. Through the proposed model, it is possible to devise an optimal epidemic control policy as the combination of the two strategies, arising from the solution of an optimization problem. Finally, the analytical computation of the epidemic prevalence in endemic diseases on homogeneous ADNs is used to optimally calibrate control actions toward mitigating an endemic disease. Simulations are provided to support our theoretical results. 
    more » « less
  2. null (Ed.)