skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: MHD R&D Activities for Liquid Metal Blankets
According to the most recently revised European design strategy for DEMO breeding blankets, mature concepts have been identified that require a reduced technological extrapolation towards DEMO and will be tested in ITER. In order to optimize and finalize the design of test blanket modules, a number of issues have to be better understood that are related to the magnetohydrodynamic (MHD) interactions of the liquid breeder with the strong magnetic field that confines the fusion plasma. The aim of the present paper is to describe the state of the art of the study of MHD effects coupled with other physical phenomena, such as tritium transport, corrosion and heat transfer. Both numerical and experimental approaches are discussed, as well as future requirements to achieve a reliable prediction of these processes in liquid metal blankets.  more » « less
Award ID(s):
1803730
PAR ID:
10376827
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Energies
Volume:
14
Issue:
20
ISSN:
1996-1073
Page Range / eLocation ID:
6640
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Liquid propylene-glycol (PG) has long been used as an anti-icing substance, for example, by spraying on an airplane parked in an airport. In applications, large quantities of PG flow away, which is costly and raises environmental concerns. Here we report propylene-glycol materials, including PG-gels and PG-gel/cotton composites. A PG-gel consists of PG molecules as a solvent and a polymer network. PG evaporates slowly, and the polymer network retains the PG molecules so long as the gel is not in contact with running water. Water and PG form a eutectic system with an eutectic temperature of −60 ◦C. When ice falls on the surface of the gel, the ice and the PG molecules compete for water molecules, and thermodynamics dictates that the ice should lose water molecules to the PG molecules, so that ice melts and water molecules dissolve in the gel. A liquid-like layer exists on the ice/gel interface, the adhesion energy between the gel and ice is low, and ice readily slides on the gel. We peel a PG-gel from ice, and measure a low adhesion energy of ∼3 Jm−2 at temperatures about −35 ◦C. We further demonstrate PG-gel/cotton composites as tough, anti-icing blankets. The blankets are reusable if one removes water by dehydration, and replenish PG by submerging the blanket in liquid PG. 
    more » « less
  2. This demo introduces participants to the concepts and application of BRIDGES, a software infrastructure designed to facilitate hands-on experience for solving traditional problems in introductory computer science courses using data from real-world systems that are of interest to students, such as Facebook, Twitter, and Google Maps. BRIDGES provides access to real-world data sets for use in traditional data structures programming assignments, without requiring students to work with complex and varied APIs to acquire such data. BRIDGES also helps the students to explore and understand the use of data structures by providing each student with a visualization of operations performed on the student's own implementation of a data structure. BRIDGES visualizations can be easily shared (via a weblink) with peers, friends, and family. Demo attendees will see (and possibly engage in) hands-on experience with BRIDGES and will have the opportunity to discuss how BRIDGES can be used to support various introductory computer science courses. Additionally, the demo will complement our oral presentation of our work at SIGCSE, by providing hands-on demonstrations of BRIDGES. 
    more » « less
  3. Magnetohydrodynamics (MHD) is a unique approach for pumping fluids on a microscale and is highly suitable for enabling multiple functions for chemical analysis on a chip. An ionic current, j , is established in the fluid between selectively-activated electrodes in the presence of a magnetic field, B , that is perpendicular to the current, to generate a force, F B , orthogonal to j and B , through the right hand rule. F B is a body force that propels the liquid in the same direction through momentum transfer. We use microelectrodes, which are patterned into different, individually-addressable geometries on chips. Those electrodes are modified with poly(3,4-ethylenedioxythiophene), PEDOT, a conducting polymer, that converts the applied electronic current in the external circuit to ionic current in the fluid [1]. A small NdFeB permanent magnet is placed under the chip to provide B . By strategic activation of the electrodes, fluid flow can be programmable. For example, we previously demonstrated that MHD can start, stop, reverse, adjust speed, and alter profiles of the fluid flow. We have also shown recently that MHD fluid flow can be diverted in a contactless way by magnetic field gradients when paramagnetic species are present [2]. In our presentation, we will discuss how MHD can control the paths of individual microvolumes of different fluids for mixing, sampling, and injection. We will describe the conditions that lead to and the resulting flow profiles that result from adjacent counter flows, transverse paths, and different solvent compositions. Acknowledgements: We are grateful for financial support from the National Science Foundation (CMI-1808286) and Arkansas Bioscience Institute, the major research component of the Arkansas Tobacco Settlement Proceeds Act of 2000. References [1] Khan, F. Z.; Fritsch, I. “Chip-Scale Electrodeposition and Analysis of Poly(3,4-ethylenedioxythiophene) (PEDOT) Films for Enhanced and Sustained Microfluidics Using DC-Redox-Magnetohydrodynamics”, Journal of The Electrochemical Society 2019 , 166 (13), H615-H627. [2] Hähnel, V.; Khan, F. Z.; Mutschke, G.; Cierpka, C.; Uhlemann, M.; Fritsch, I. “Combining magnetic forces for contactless manipulation of fluids in microelectrode-microfluidic systems:, Scientific Reports 2019 , 9:5103. 
    more » « less
  4. A concise review is given of astrophysically motivated experimental and theoretical research on Taylor–Couette flow. The flows of interest rotate differentially with the inner cylinder faster than the outer, but are linearly stable against Rayleigh’s inviscid centrifugal instability. At shear Reynolds numbers as large as 10 6 , hydrodynamic flows of this type (quasi-Keplerian) appear to be nonlinearly stable: no turbulence is seen that cannot be attributed to interaction with the axial boundaries, rather than the radial shear itself. Direct numerical simulations agree, although they cannot yet reach such high Reynolds numbers. This result indicates that accretion-disc turbulence is not purely hydrodynamic in origin, at least insofar as it is driven by radial shear. Theory, however, predicts linear magnetohydrodynamic (MHD) instabilities in astrophysical discs: in particular, the standard magnetorotational instability (SMRI). MHD Taylor–Couette experiments aimed at SMRI are challenged by the low magnetic Prandtl numbers of liquid metals. High fluid Reynolds numbers and careful control of the axial boundaries are required. The quest for laboratory SMRI has been rewarded with the discovery of some interesting inductionless cousins of SMRI, and with the recently reported success in demonstrating SMRI itself using conducting axial boundaries. Some outstanding questions and near-future prospects are discussed, especially in connection with astrophysics. This article is part of the theme issue ‘Taylor–Couette and related flows on the centennial of Taylor’s seminal Philosophical Transactions paper (part 2)’. 
    more » « less
  5. Abstract We perform a geomagnetic event simulation using a newly developed magnetohydrodynamic with adaptively embedded particle‐in‐cell (MHD‐AEPIC) model. We have developed effective criteria to identify reconnection sites in the magnetotail and cover them with the PIC model. The MHD‐AEPIC simulation results are compared with Hall MHD and ideal MHD simulations to study the impacts of kinetic reconnection at multiple physical scales. At the global scale, the three models produce very similar SYM‐H and SuperMag Electrojet indexes, which indicates that the global magnetic field configurations from the three models are very close to each other. We also compare the ionospheric solver results and all three models generate similar polar cap potentials and field‐aligned currents. At the mesoscale, we compare the simulations with in situ Geotail observations in the tail. All three models produce reasonable agreement with the Geotail observations. At the kinetic scales, the MHD‐AEPIC simulation can produce a crescent shape distribution of the electron velocity space at the electron diffusion region, which agrees very well with MMS observations near a tail reconnection site. These electron scale kinetic features are not available in either the Hall MHD or ideal MHD models. Overall, the MHD‐AEPIC model compares well with observations at all scales, it works robustly, and the computational cost is acceptable due to the adaptive adjustment of the PIC domain. It remains to be determined whether kinetic physics can play a more significant role in other types of events, including but not limited to substorms. 
    more » « less