skip to main content


Title: How Fifth-Grade English Learners Engage in Systems Thinking Using Computational Models
The purpose of this study was to investigate how computational modeling promotes systems thinking for English Learners (ELs) in fifth-grade science instruction. Individual student interviews were conducted with nine ELs about computational models of landfill bottle systems they had developed as part of a physical science unit. We found evidence of student engagement in four systems thinking practices. Students used data produced by their models to investigate the landfill bottle system as a whole (Practice 1). Students identified agents and their relationships in the system (Practice 2). Students thought in levels, shuttling between the agent and aggregate levels (Practice 3). However, while students could think in levels to develop their models, they struggled to engage in this practice when presented with novel scenarios (e.g., open vs. closed system). Finally, students communicated information about the system using multiple modalities and less-than-perfect English (Practice 4). Overall, these findings suggest that integrating computational modeling into standards-aligned science instruction can provide a rich context for fostering systems thinking among linguistically diverse elementary students.  more » « less
Award ID(s):
1742138
NSF-PAR ID:
10376991
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Systems
Volume:
8
Issue:
4
ISSN:
2079-8954
Page Range / eLocation ID:
47
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A substantial achievement gap between K-12 English learners (ELs) and non-ELs in science, technology, engineering, and mathematics (STEM) content areas exists, as indicated by national assessments of student outcomes. Considering the expected steady increase in students who are ELs in the U.S., determining methods for addressing this achievement gap is of immediate concern. Research has indicated this gap may be exacerbated by lack of adequate teacher preparation, specifically in STEM fields, to effectively teach students who are culturally and linguistically diverse (CLD). Founded in previous research about effective teacher preparation, the current case study pilots and reports on a model of early STEM preservice teacher training that integrates: knowledge of language development for ELs, early experiences with CLD learners, and professional development activities that guide the implementation of STEM pedagogical methods. Five STEM preservice teachers participated in a year-long supplemental training program focused on adapting STEM instruction for ELs. Components of the supplemental program included: (a) coursework extending teacher knowledge of EL language development, (b) fieldwork providing early exposure to research-based teaching experiences with EL students, and (c) professional development guiding the creation of hands-on STEM curriculum for diverse learners. Five secondary preservice teachers experienced increases in self-efficacy, growth in STEM instructional practices, and greater motivation for teaching in high-need schools. Results will inform educational models for improving STEM-EL teaching, thereby addressing a crucial need to serve the growing national population of underserved students. 
    more » « less
  2. The Maker Partnership Program (MPP) is an NSF-supported project that addresses the critical need for models of professional development (PD) and support that help elementary-level science teachers integrate computer science and computational thinking (CS and CT) into their classroom practices. The MPP aims to foster integration of these disciplines through maker pedagogy and curriculum. The MPP was designed as a research-practice partnership that allows researchers and practitioners to collaborate and iteratively design, implement and test the PD and curriculum. This paper describes the key elements of the MPP and early findings from surveys of teachers and students participating in the program. Our research focuses on learning how to develop teachers’ capacity to integrate CS and CT into elementary-level science instruction; understanding whether and how this integrated instruction promotes deeper student learning of science, CS and CT, as well as interest and engagement in these subjects; and exploring how the model may need to be adapted to fit local contexts. Participating teachers reported gaining knowledge and confidence for implementing the maker curriculum through the PDs. They anticipated that the greatest implementation challenges would be lack of preparation time, inaccessible computer hardware, lack of administrative support, and a lack of CS knowledge. Student survey results show that most participants were interested in CS and science at the beginning of the program. Student responses to questions about their disposition toward collaboration and persistence suggest some room for growth. Student responses to questions about who does CS are consistent with prevalent gender stereotypes (e.g., boys are naturally better than girls at computer programming), particularly among boys. 
    more » « less
  3. null (Ed.)
    Engaging students in science learning that integrates disciplinary knowledge and practices such as computational thinking (CT) is a challenge that may represent unfamiliar territory for many teachers. CompHydro Baltimore is a collaborative partnership aimed at enacting Next Generation Science Standards (NGSS)–aligned instruction to support students in developing knowledge and practice reflective of the goals laid out in A Framework for K–12 Science Education (National Research Council 2012) “... that by the end of 12th grade, all students possess sufficient knowledge of science and engineering to engage in public discussion on related issues … and are careful consumers of scientific and technological information related to their everyday lives.” This article presents the results of a partnership that generated a new high school level curriculum and teacher professional development program that tackled the challenge of integrating hydrologic learning with computational thinking as applied to a real-world issue of flooding. CompHydro Baltimore produced Baltimore Floods, a six-lesson high school unit that builds students’ water literacy by engaging them in computational thinking (CT) and modeling practices as they learn about water system processes involved in urban flooding (See Computational Thinking and Associated Science Practices). CompHydro demonstrates that broad partnerships can address these challenges, bringing together the diverse expertise necessary to develop innovative CT-infused science curriculum materials and the teacher supports needed for successful implementation. 
    more » « less
  4. Abstract

    Understanding the world around us is a growing necessity for the whole public, as citizens are required to make informed decisions in their everyday lives about complex issues. Systems thinking (ST) is a promising approach for developing solutions to various problems that society faces and has been acknowledged as a crosscutting concept that should be integrated across educational science disciplines. However, studies show that engaging students in ST is challenging, especially concerning aspects like change over time and feedback. Using computational system models and a system dynamics approach can support students in overcoming these challenges when making sense of complex phenomena. In this paper, we describe an empirical study that examines how 10th grade students engage in aspects of ST through computational system modeling as part of a Next Generation Science Standards-aligned project-based learning unit on chemical kinetics. We show students’ increased capacity to explain the underlying mechanism of the phenomenon in terms of change over time that goes beyond linear causal relationships. However, student models and their accompanying explanations were limited in scope as students did not address feedback mechanisms as part of their modeling and explanations. In addition, we describe specific challenges students encountered when evaluating and revising models. In particular, we show epistemological barriers to fruitful use of real-world data for model revision. Our findings provide insights into the opportunities of a system dynamics approach and the challenges that remain in supporting students to make sense of complex phenomena and nonlinear mechanisms.

     
    more » « less
  5. Previous research has established that embodied modeling (role-playing agents in a system) can support learning about complexity. Separately, research has demonstrated that increasing the multimodal resources available to students can support sensemaking, particularly for students classified as English Learners. This study bridges these two bodies of research to consider how embodied models can strengthen an interconnected system of multimodal models created by a classroom. We explore how iteratively refining embodied modeling activities strengthened connections to other models, real-world phenomena, and multimodal representations. Through design-based research in a sixth grade classroom studying ecosystems, we refined embodied modeling activities initially conceived as supports for computational thinking and modeling. Across three iterative cycles, we illustrate how the conceptual and epistemic relationship between the computational and embodied model shifted, and we analyze how these shifts shaped opportunities for learning and participation by: (1) recognizing each student’s perspectives as critical for making sense of the model, (2) encouraging students to question and modify the “code” for the model, and (3) leveraging multimodal resources, including graphs, gestures, and student-generated language, for meaning-making. Through these shifts, the embodied model became a full-fledged component of the classroom’s model system and created more equitable opportunities for learning and participation. 
    more » « less