skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Simple numerical solutions to the Einstein constraints on various three-manifolds
Abstract Numerical solutions to the Einstein constraint equations are constructed on a selection of compact orientable three-dimensional manifolds with non-trivial topologies. A simple constant mean curvature solution and a somewhat more complicated non-constant mean curvature solution are computed on example manifolds from three of the eight Thursten geometrization classes. The constant mean curvature solutions found here are also solutions to the Yamabe problem that transforms a geometry into one with constant scalar curvature.  more » « less
Award ID(s):
2012857
PAR ID:
10377017
Author(s) / Creator(s):
;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
General Relativity and Gravitation
Volume:
54
Issue:
10
ISSN:
0001-7701
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We prove the rigidity ofrectifiableboundaries with constantdistributionalmean curvature in the Brendle class of warped product manifolds (which includes important models in general relativity, like the de Sitter–Schwarzschild and Reissner–Nordstrom manifolds).As a corollary, we characterize limits of rectifiable boundaries whose mean curvatures converge, as distributions, to a constant.The latter result is new, and requires the full strength of distributional CMC-rigidity, even when one considers smooth boundaries whose mean curvature oscillations vanish in arbitrarily strong C k C^{k}-norms.Our method also establishes that rectifiable boundaries of sets of finite perimeter in the hyperbolic space with constant distributional mean curvature are finite unions of possibly mutually tangent geodesic spheres. 
    more » « less
  2. We prove the rigidity of rectifiable boundaries with constant distributional mean curvature in the Brendle class of warped product manifolds (which includes important models in General Relativity, like the deSitter--Schwarzschild and Reissner--Nordstrom manifolds). As a corollary we characterize limits of rectifiable boundaries whose mean curvatures converge, as distributions, to a constant. The latter result is new, and requires the full strength of distributional CMC-rigidity, even when one considers smooth boundaries whose mean curvature oscillations vanish in arbitrarily strong C^k-norms. 
    more » « less
  3. We prove the existence of nontrivial closed surfaces with constant anisotropic mean curvature with respect to elliptic integrands in closed smooth 3–dimensional Riemannian manifolds. The constructed min‐max surfaces are smooth with at most one singular point. The constant anisotropic mean curvature can be fixed to be any real number. In particular, we partially solve a conjecture of Allard in dimension 3. 
    more » « less
  4. Abstract We show that recent work of Song implies that torsion‐free hyperbolic groups with Gromov boundary arerealized as fundamental groups of closed 3‐manifolds of constant negative curvature if and only if the solution to an associated spherical Plateau problem for group homology is isometric to such a 3‐manifold, and suggest some related questions. 
    more » « less
  5. Abstract Generalized torical band inequalities give precise upper bounds for the width of compact manifolds with boundary in terms of positive pointwise lower bounds for scalar curvature, assuming certain topological conditions. We extend several incarnations of these results in which pointwise scalar curvature bounds are replaced with spectral scalar curvature bounds. More precisely, we prove upper bounds for the width in terms of the principal eigenvalue of the operator $$-\Delta +cR$$, where $$R$$ denotes scalar curvature and $c>0$ is a constant. Three separate strategies are employed to obtain distinct results holding in different dimensions and under varying hypotheses, namely we utilize spacetime harmonic functions, $$\mu $$-bubbles, and spinorial Callias operators. In dimension 3, where the strongest result is produced, we are also able to treat open and incomplete manifolds, and establish the appropriate rigidity statements. Additionally, a version of such spectral torus band inequalities is given where tori are replaced with cubes. Finally, as a corollary, we generalize the classical work of Schoen and Yau, on the existence of black holes due to concentration of matter, to higher dimensions and with alternate measurements of size. 
    more » « less