skip to main content


Title: Simple numerical solutions to the Einstein constraints on various three-manifolds
Abstract

Numerical solutions to the Einstein constraint equations are constructed on a selection of compact orientable three-dimensional manifolds with non-trivial topologies. A simple constant mean curvature solution and a somewhat more complicated non-constant mean curvature solution are computed on example manifolds from three of the eight Thursten geometrization classes. The constant mean curvature solutions found here are also solutions to the Yamabe problem that transforms a geometry into one with constant scalar curvature.

 
more » « less
Award ID(s):
2012857
NSF-PAR ID:
10377017
Author(s) / Creator(s):
;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
General Relativity and Gravitation
Volume:
54
Issue:
10
ISSN:
0001-7701
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We show that recent work of Song implies that torsion‐free hyperbolic groups with Gromov boundary arerealized as fundamental groups of closed 3‐manifolds of constant negative curvature if and only if the solution to an associated spherical Plateau problem for group homology is isometric to such a 3‐manifold, and suggest some related questions.

     
    more » « less
  2. Abstract

    We prove that various spaces of constrained positive scalar curvature metrics on compact three‐manifolds with boundary, when not empty, are contractible. The constraints we mostly focus on are given in terms of local conditions on the mean curvature of the boundary, and our treatment includes both the mean‐convex and the minimal case. We then discuss the implications of these results on the topology of different subspaces of asymptotically flat initial data sets for the Einstein field equations in general relativity.

     
    more » « less
  3. Abstract We obtain a comparison formula for integrals of mean curvatures of Riemannian hypersurfaces via Reilly’s identities. As applications, we derive several geometric inequalities for a convex hypersurface Γ \Gamma in a Cartan-Hadamard manifold M M . In particular, we show that the first mean curvature integral of a convex hypersurface γ \gamma nested inside Γ \Gamma cannot exceed that of Γ \Gamma , which leads to a sharp lower bound for the total first mean curvature of Γ \Gamma in terms of the volume it bounds in M M in dimension 3. This monotonicity property is extended to all mean curvature integrals when γ \gamma is parallel to Γ \Gamma , or M M has constant curvature. We also characterize hyperbolic balls as minimizers of the mean curvature integrals among balls with equal radii in Cartan-Hadamard manifolds. 
    more » « less
  4. null (Ed.)
    Abstract Let $$u_{k}$$ u k be a solution of the Helmholtz equation with the wave number k , $$\varDelta u_{k}+k^{2} u_{k}=0$$ Δ u k + k 2 u k = 0 , on (a small ball in) either $${\mathbb {R}}^{n}$$ R n , $${\mathbb {S}}^{n}$$ S n , or $${\mathbb {H}}^{n}$$ H n . For a fixed point p , we define $$M_{u_{k}}(r)=\max _{d(x,p)\le r}|u_{k}(x)|.$$ M u k ( r ) = max d ( x , p ) ≤ r | u k ( x ) | . The following three ball inequality $$M_{u_{k}}(2r)\le C(k,r,\alpha )M_{u_{k}}(r)^{\alpha }M_{u_{k}}(4r)^{1-\alpha }$$ M u k ( 2 r ) ≤ C ( k , r , α ) M u k ( r ) α M u k ( 4 r ) 1 - α is well known, it holds for some $$\alpha \in (0,1)$$ α ∈ ( 0 , 1 ) and $$C(k,r,\alpha )>0$$ C ( k , r , α ) > 0 independent of $$u_{k}$$ u k . We show that the constant $$C(k,r,\alpha )$$ C ( k , r , α ) grows exponentially in k (when r is fixed and small). We also compare our result with the increased stability for solutions of the Cauchy problem for the Helmholtz equation on Riemannian manifolds. 
    more » « less
  5. We prove that, for a generic set of smooth prescription functions h on a closed ambient manifold, there always exists a nontrivial, smooth, closed hypersurface of prescribed mean curvature h. The solution is either an embedded minimal hypersurface with integer multiplicity, or a non-minimal almost embedded hypersurface of multiplicity one. More precisely, we show that our previous min-max theory, developed for constant mean curvature hypersurfaces, can be extended to construct min-max prescribed mean curvature hypersurfaces for certain classes of prescription function, including a generic set of smooth functions, and all nonzero analytic functions. In particular we do not need to assume that h has a sign. 
    more » « less