skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Spectral Torical Band Inequalities and Generalizations of the Schoen–Yau Black Hole Existence Theorem
Abstract Generalized torical band inequalities give precise upper bounds for the width of compact manifolds with boundary in terms of positive pointwise lower bounds for scalar curvature, assuming certain topological conditions. We extend several incarnations of these results in which pointwise scalar curvature bounds are replaced with spectral scalar curvature bounds. More precisely, we prove upper bounds for the width in terms of the principal eigenvalue of the operator $$-\Delta +cR$$, where $$R$$ denotes scalar curvature and $c>0$ is a constant. Three separate strategies are employed to obtain distinct results holding in different dimensions and under varying hypotheses, namely we utilize spacetime harmonic functions, $$\mu $$-bubbles, and spinorial Callias operators. In dimension 3, where the strongest result is produced, we are also able to treat open and incomplete manifolds, and establish the appropriate rigidity statements. Additionally, a version of such spectral torus band inequalities is given where tori are replaced with cubes. Finally, as a corollary, we generalize the classical work of Schoen and Yau, on the existence of black holes due to concentration of matter, to higher dimensions and with alternate measurements of size.  more » « less
Award ID(s):
2104229 2405045
PAR ID:
10508625
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Oxford Academic
Date Published:
Journal Name:
International Mathematics Research Notices
Volume:
2024
Issue:
4
ISSN:
1073-7928
Page Range / eLocation ID:
3139 to 3175
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Two sharp comparison results are derived for 3D complete noncompact manifolds with scalar curvature bounded from below. The 1st one concerns the Green’s function. When the scalar curvature is nonnegative, it states that the rate of decay of an energy quantity over the level set is strictly less than that of the Euclidean space unless the manifold itself is isometric to the Euclidean space. The result is in turn converted into a sharp area comparison for the level set of the Green’s function when in addition the Ricci curvature of the manifold is assumed to be asymptotically nonnegative at infinity. The 2nd result provides a sharp upper bound of the bottom spectrum in terms of the scalar curvature lower bound, in contrast to the classical result of Cheng, which involves a Ricci curvature lower bound. 
    more » « less
  2. I summarize recent progress on obtaining rigorous upper bounds on superconducting transition temperature [Formula: see text] in two dimensions independent of pairing mechanism or interaction strength. These results are derived by finding a general upper bound for the superfluid stiffness for a multi-band system with arbitrary interactions, with the only assumption that the external vector potential couples to the kinetic energy and not to the interactions. This bound is then combined with the universal relation between the superfluid stiffness and the Berezinskii–Kosterlitz–Thouless [Formula: see text] in 2D. For parabolic dispersion, one obtains the simple result that [Formula: see text], which has been tested in recent experiments. More generally, the bounds are expressed in terms of the optical spectral weight and lead to stringent constraints for the [Formula: see text] of low-density, strongly correlated superconductors. Results for [Formula: see text] bounds for models of flat-band superconductors, where the kinetic energy vanishes and the vector potential must couple to interactions, are briefly summarized. Upper bounds on [Formula: see text] in 3D remains an open problem, and I describe how questions of universality underlie the challenges in 3D. 
    more » « less
  3. Abstract We derive new inequalities between the boundary capacity of an asymptotically flat 3-manifold with nonnegative scalar curvature and boundary quantities that relate to quasi-local mass; one relates to Brown–York mass and the other is new. We argue by recasting the setup to the study of mean-convex fill-ins with nonnegative scalar curvature and, in the process, we consider fill-ins with singular metrics, which may have independent interest. Among other things, our work yields new variational characterizations of Riemannian Schwarzschild manifolds and new comparison results for surfaces in them. 
    more » « less
  4. Following Gromov, a Riemannian manifold is called area-extremal if any modification that increases scalar curvature must decrease the area of some tangent 2-plane. We prove that large classes of compact 4-manifolds, with or without boundary, with nonnegative sectional curvature are area-extremal. We also show that all regions of positive sectional curvature on 4-manifolds are locally area-extremal. These results are obtained analyzing sections in the kernel of a twisted Dirac operator constructed from pairs of metrics, and using the Finsler–Thorpe trick for sectional curvature bounds in dimension 4. 
    more » « less
  5. Abstract We prove the macroscopic cousins of three conjectures: (1) a conjectural bound of the simplicial volume of a Riemannian manifold in the presence of a lower scalar curvature bound, (2) the conjecture that rationally essential manifolds do not admit metrics of positive scalar curvature, (3) a conjectural bound of $$\ell ^2$$ ℓ 2 -Betti numbers of aspherical Riemannian manifolds in the presence of a lower scalar curvature bound. The macroscopic cousin is the statement one obtains by replacing a lower scalar curvature bound by an upper bound on the volumes of 1-balls in the universal cover. 
    more » « less