skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Revealing the role of ionic liquids in promoting fuel cell catalysts reactivity and durability
Abstract Ionic liquids (ILs) have shown to be promising additives to the catalyst layer to enhance oxygen reduction reaction in polymer electrolyte fuel cells. However, fundamental understanding of their role in complex catalyst layers in practically relevant membrane electrode assembly environment is needed for rational design of highly durable and active platinum-based catalysts. Here we explore three imidazolium-derived ionic liquids, selected for their high proton conductivity and oxygen solubility, and incorporate them into high surface area carbon black support. Further, we establish a correlation between the physical properties and electrochemical performance of the ionic liquid-modified catalysts by providing direct evidence of ionic liquids role in altering hydrophilic/hydrophobic interactions within the catalyst layer interface. The resulting catalyst with optimized interface design achieved a high mass activity of 347 A g−1Ptat 0.9 V under H2/O2, power density of 0.909 W cm−2under H2/air and 1.5 bar, and had only 0.11 V potential decrease at 0.8 A cm−2after 30 k accelerated stress test cycles. This performance stems from substantial enhancement in Pt utilization, which is buried inside the mesopores and is now accessible due to ILs addition.  more » « less
Award ID(s):
1902330
PAR ID:
10377042
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
13
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The performance of electrocatalysts is critical for renewable energy technologies. While the electrocatalytic activity can be modulated through structural and compositional engineering following the Sabatier principle, the insufficiently explored catalyst-electrolyte interface is promising to promote microkinetic processes such as physisorption and desorption. By combining experimental designs and molecular dynamics simulations with explicit solvent in high accuracy, we demonstrated that dimethylformamide can work as an effective surface molecular pump to facilitate the entrapment of oxygen and outflux of water. Dimethylformamide disrupts the interfacial network of hydrogen bonds, leading to enhanced activity of the oxygen reduction reaction by a factor of 2 to 3. This strategy works generally for platinum-alloy catalysts, and we introduce an optimal model PtCuNi catalyst with an unprecedented specific activity of 21.8 ± 2.1 mA/cm2at 0.9 V versus the reversible hydrogen electrode, nearly double the previous record, and an ultrahigh mass activity of 10.7 ± 1.1 A/mgPt
    more » « less
  2. Proton Exchange Membrane (PEM) fuel cells are a suitable electrochemical power source for heavy duty vehicle (HDV) applications due to their high efficiency and durability. The cathode of the fuel cell uses a higher geometric loading of platinum (∼0.2 to 0.4 mgPt/cm2) for the electrocatalysis of the kinetically sluggish Oxygen Reduction Reaction (ORR) which requires higher weight percent loading of the metal (∼50%) on the carbon support to decrease the catalyst layer thickness and hence, the reactant transport losses. The conventionally used supports for platinum catalyst, such as the KetjenBlackTMtype high surface area carbon (HSC) features limited mesopore area for the dispersion of Pt nanoparticles leading to increased aggregation and poor durability. Here, we show a new class of carbon materials known as the Engineered Catalyst Support (ECS) developed by Pajarito Powder with higher mesopore fraction for the dispersion of higher weight percentage of Pt nanoparticles. ECS materials can disperse up to 50% Pt by weight of the catalyst thereby enabling lower catalyst layer thickness with higher performance retained after durability test. A comprehensive set of physico-chemical and electrochemical studies in membrane electrode assembly (MEA) are reported to understand the performance and durability of Pt/ECS catalysts. 
    more » « less
  3. Abstract The reduction of dioxygen to produce selectively H2O2or H2O is crucial in various fields. While platinum‐based materials excel in 4H+/4eoxygen reduction reaction (ORR) catalysis, cost and resource limitations drive the search for cost‐effective and abundant transition metal catalysts. It is thus of great importance to understand how the selectivity and efficiency of 3d‐metal ORR catalysts can be tuned. In this context, we report on a Co complex supported by a bisthiolate N2S2‐donor ligand acting as a homogeneous ORR catalyst in acetonitrile solutions both in the presence of a one‐electron reducing agent (selectivity for H2O of 93 % and TOFi=3 000 h−1) and under electrochemically‐assisted conditions (0.81 V <η<1.10 V, selectivity for H2O between 85 % and 95 %). Interestingly, such a predominant 4H+/4epathway for Co‐based ORR catalysts is rare, highlighting the key role of the thiolate donor ligand. Besides, the selectivity of this Co catalyst under chemical ORR conditions is inverse with respect to the Mn and Fe catalysts supported by the same ligand, which evidences the impact of the nature of the metal ion on the ORR selectivity. 
    more » « less
  4. Abstract To produce efficient ORR catalysts with low Pt content, PtNi porous films (PFs) with sufficiently exposed Pt active sites were designed by an approach combining electrochemical bottom‐up (electrodeposition) and top‐down (anodization) processes. The dynamic oxygen‐bubble template (DOBT) programmably controlled by a square‐wave potential was used to tune the catalyst morphology and expose Pt active facets in PtNi PFs. Surface‐bounded species, such as hydroxyl (OH*, *=surface site) on the exposed PtNi PFs surfaces were adjusted by the applied anodic voltage, further affecting the dynamic oxygen (O2) bubbles adsorption on Pt. As a result, PtNi PF with enriched Pt(111) facets (denoted as Pt3.5 %Ni PF) was obtained, showing prominent ORR activity with an onset potential of 0.92 V (vs. RHE) at an ultra‐low Pt loading (0.015 mg cm−2). 
    more » « less
  5. Abstract Electrostatic gating of two-dimensional (2D) materials with ionic liquids (ILs), leading to the accumulation of high surface charge carrier densities, has been often exploited in 2D devices. However, the intrinsic liquid nature of ILs, their sensitivity to humidity, and the stress induced in frozen liquids inhibit ILs from constituting an ideal platform for electrostatic gating. Here we report a lithium-ion solid electrolyte substrate, demonstrating its application in high-performance back-gated n-type MoS2and p-type WSe2transistors with sub-threshold values approaching the ideal limit of 60 mV/dec and complementary inverter amplifier gain of 34, the highest among comparable amplifiers. Remarkably, these outstanding values were obtained under 1 V power supply. Microscopic studies of the transistor channel using microwave impedance microscopy reveal a homogeneous channel formation, indicative of a smooth interface between the TMD and underlying electrolytic substrate. These results establish lithium-ion substrates as a promising alternative to ILs for advanced thin-film devices. 
    more » « less