Heteroepitaxial crystallographic tilt has been investigated as a possible strain‐relief mechanism in Al‐rich (Al>50%) AlGaN heteroepitaxial layers grown on single‐crystal (0001) AlN substrates with varying miscuts from 0.05° to 4.30°. The magnitude of the elastic lattice deformation‐induced tilt increases monotonically with the miscut angle, tightly following the Nagai tilt model. Although tilt angles as high as 0.1° are recorded, reciprocal space mapping (RSM) broadening and wafer bow measurements do not show any significant changes as a function of the heteroepitaxial tilt angle. While crystallographic tilting has been shown to be effective in controlling strain in some other heteroepitaxial systems, it does not provide any appreciable strain relief of the compressive strain in AlGaN/AlN heteroepitaxy.
- PAR ID:
- 10377045
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- physica status solidi (RRL) – Rapid Research Letters
- Volume:
- 17
- Issue:
- 1
- ISSN:
- 1862-6254
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
We report on the absence of strain relaxation mechanism in Al 0.6 Ga 0.4 N epilayers grown on (0001) AlN substrates for thickness as large as 3.5 μm, three-orders of magnitude beyond the Matthews–Blakeslee critical thickness for the formation of misfit dislocations (MDs). A steady-state compressive stress of 3–4 GPa was observed throughout the AlGaN growth leading to a large lattice bow (a radius of curvature of 0.5 m −1 ) for the thickest sample. Despite the large lattice mismatch-induced strain energy, the epilayers exhibited a smooth and crack-free surface morphology. These results point to the presence of a large barrier for nucleation of MDs in Al-rich AlGaN epilayers. Compositionally graded AlGaN layers were investigated as potential strain relief layers by the intentional introduction of MDs. While the graded layers abetted MD formation, the inadequate length of these MDs correlated with insignificant strain relaxation. This study emphasizes the importance of developing strain management strategies for the implementation of the single-crystal AlN substrate platform for III-nitride deep-UV optoelectronics and power electronics.more » « less
-
Abstract The discovery of ferroelectricity in AlN‐based thin films, including Al1‐
x Scx N and Al1‐x Bx N, over the past few years has spurred great research interests worldwide. In this review, we carefully examined the latest developments for these ferroelectric films with respect to alloy composition, temperature, film thickness, deposition condition, and fatigue endurance by electric field cycling. Looking ahead, there is an urgent need to resolve the challenge of large current leakage faced by these films, which necessitates a combined efforts from both simulations and experiments to identify the root cause and eventually come up with engineering strategies to suppress such leakage. In addition, overcoming the thickness scaling challenge to push ferroelectric thin film down to a few nanometers for better device miniaturization will also be of great interest. Considering the somewhat unexpected discovery of AlN‐based thin films with potential ferroelectric application, we believe that it will be also rewarding to further explore other III‐V‐based semiconductor materials. -
The polarization difference and band offset between Al(Ga)N and GaN induce two-dimensional (2D) free carriers in Al(Ga)N/GaN heterojunctions without any chemical doping. A high-density 2D electron gas (2DEG), analogous to the recently discovered 2D hole gas in a metal-polar structure, is predicted in a N-polar pseudomorphic GaN/Al(Ga)N heterostructure on unstrained AlN. We report the observation of such 2DEGs in N-polar undoped pseudomorphic GaN/AlGaN heterostructures on single-crystal AlN substrates by molecular beam epitaxy. With a high electron density of ∼4.3 ×1013/cm2 that maintains down to cryogenic temperatures and a room temperature electron mobility of ∼450 cm2/V s, a sheet resistance as low as ∼320 Ω/◻ is achieved in a structure with an 8 nm GaN layer. These results indicate significant potential of AlN platform for future high-power RF electronics based on N-polar III-nitride high electron mobility transistors.
-
The ultra-wide bandgap of Al-rich AlGaN is expected to support a significantly larger breakdown field compared to GaN, but the reported performance thus far has been limited by the use of foreign substrates. In this Letter, the material and electrical properties of Al 0.85 Ga 0.15 N/Al 0.6 Ga 0.4 N high electron mobility transistors (HEMT) grown on a 2-in. single crystal AlN substrate are investigated, and it is demonstrated that native AlN substrates unlock the potential for Al-rich AlGaN to sustain large fields in such devices. We further study how Ohmic contacts made directly to a Si-doped channel layer reduce the knee voltage and increase the output current density. High-quality AlGaN growth is confirmed via scanning transmission electron microscopy, which also reveals the absence of metal penetration at the Ohmic contact interface and is in contrast to established GaN HEMT technology. Two-terminal mesa breakdown characteristics with 1.3 μm separation possess a record-high breakdown field strength of ∼11.5 MV/cm for an undoped Al 0.6 Ga 0.4 N-channel layer. The breakdown voltages for three-terminal devices measured with gate-drain distances of 4 and 9 μm are 850 and 1500 V, respectively.more » « less
-
The integration of solid-state single-photon sources with foundry-compatible photonic platforms is crucial for practical and scalable quantum photonic applications. This study explores aluminum nitride (AlN) as a material with properties highly suitable for integrated on-chip photonics and the ability to host defect-center related single-photon emitters. We have conducted a comprehensive analysis of the creation of single-photon emitters in AlN, utilizing heavy ion irradiation and thermal annealing techniques. Subsequently, we have performed a detailed analysis of their photophysical properties. Guided by theoretical predictions, we assessed the potential of Zirconium (Zr) ions to create optically addressable spin defects and employed Krypton (Kr) ions as an alternative to target lattice defects without inducing chemical doping effects. With a 532 nm excitation wavelength, we found that single-photon emitters induced by ion irradiation were primarily associated with vacancy-type defects in the AlN lattice for both Zr and Kr ions. The density of these emitters increased with ion fluence, and there was an optimal value that resulted in a high density of emitters with low AlN background fluorescence. Under a shorter excitation wavelength of 405 nm, Zr-irradiated AlN exhibited isolated point-like emitters with fluorescence in the spectral range theoretically predicted for spin-defects. However, similar defects emitting in the same spectral range were also observed in AlN irradiated with Kr ions as well as in as-grown AlN with intrinsic defects. This result is supportive of the earlier theoretical predictions, but at the same time highlights the difficulties in identifying the sought-after quantum emitters with interesting properties related to the incorporation of Zr ions into the AlN lattice by fluorescence alone. The results of this study largely contribute to the field of creating quantum emitters in AlN by ion irradiation and direct future studies emphasizing the need for spatially localized Zr implantation and testing for specific spin properties.