skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: SOFT ROBOTICS: FLUID-DRIVEN SELF-FOLDING PAPERS
We demonstrate a self-folding paper robot with capillary force driven fluid. When water is sprayed on fluidic channels patterned on paper, the 2-D sheet of paper can be controllably self-folded into various 3-D structures; half-oval, circle, round-edge square, triangle, half-circle, and table. The self-folding paper sheet can be readily fabricated via a double-sided wax printing method, forming a bilayer structure of the fluidic channel and the hydrophobic wax, in which these two layers have different swelling/shrinking properties. The patterned paper performs folding actuation with water and unfolding behavior with evaporation without being mechanically manipulated by external forces or moments. Finally, we create a paper gripper based on this self-folding actuation, conveying a low-weight object. This report demonstrates the possibility of paper microfluidics for self-folding actuation and soft robotics.  more » « less
Award ID(s):
1503462
PAR ID:
10377142
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Technical digest SolidState Sensor Actuator and Microsystems Workshop
ISSN:
1539-204X
Page Range / eLocation ID:
163-166
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Thin, flexible sheets can be patterned and bonded to form internal fluidic networks, which enable actuation, sensing, and control, but failure of these sheet-based systems—and how to take advantage of this failure—remains relatively unexplored. Here, we examine this concept using heat-sealable textiles as a material platform. We determine the effects of geometry and material processing on bond strength and burst pressure; these findings can ensure a sheet-based fluidic system is sufficiently robust for a given use case. Building on this framework, we introduce a fuse-like component into which failure is deliberately programmed. In addition to limiting damage in the case of overpressurization, we leverage this programmed failure to enable distinct capabilities including (1) the binary selection of operating modes and (2) the sequencing of a series of tasks with a single pressure input. These findings will facilitate the development of more intelligent sheet-based fluidic systems. 
    more » « less
  2. Pesticides are commonly applied on foliage, forming dry deposits on the leaf cuticular wax. However, their photochemical transformation in this lipophilic environment is much less understood compared with that in surface water. In this work, sunlight photolysis of six chlorinated phenoxyacetic acid herbicides ( i.e. , 2,4-D and structural analogues) was evaluated in four organic solvents, on quartz, and on paraffin wax. In solvents of low polarity ( i.e. , n -heptane and 2-propanol), direct photolysis of 2,4-D herbicides was enhanced due to the relatively high quantum yields in these solvents. Photolysis on paraffin wax was slower than photolysis on quartz by a factor of 3–9, but was comparable with that in solvents of low polarity. With environmentally relevant irradiation and surface loading, the half-lives of 2,4-D herbicides on paraffin wax were 27–159 h, which are within the same range reported for biodegradation, the dominant dissipation pathway in the current 2,4-D fate model. Product analyses showed that photoreductive dechlorination is the dominant pathway in organic solvents, accounting for 68–100% of parent compound decay. On quartz and paraffin wax surfaces, however, photoreductive dechlorination products accounted for <60% of parent compound decay. Combining kinetic modeling and product analyses, it was shown that neither could the two additional putative pathways (photosubstitution of chlorine by hydroxyl group and cleavage of the ether bond) fully account for the total phototransformation on surfaces. These results suggest that rapid photolysis on surfaces can be attributed to unique pathways that are absent in the organic solvent phase. 
    more » « less
  3. Abstract Microfluidic paper-based analytical devices (microPADs) are emerging as cost-effective and portable platforms for point-of-care assays. A fundamental limitation of microPAD fabrication is the imprecise nature of most methods for patterning paper. The present work demonstrates that paper patterned via wax printing can be miniaturized by treating it with periodate to produce higher-resolution, high-fidelity microPADs. The optimal miniaturization parameters were determined by immersing microPADs in various concentrations of aqueous sodium periodate (NaIO4) for varying lengths of time. This treatment miniaturized microPADs by up to 80% in surface area, depending on the concentration of periodate and length of the reaction time. By immersing microPADs in 0.5-M NaIO4for 48 hours, devices were miniaturized by 78% in surface area, and this treatment allowed for the fabrication of functional channels with widths as small as 301 µm and hydrophobic barriers with widths as small as 387 µm. The miniaturized devices were shown to be compatible with redox-based colorimetric assays and enzymatic reactions. This miniaturization technique provides a new option for fabricating sub-millimeter-sized features in paper-based fluidic devices without requiring specialized equipment and could enable new capabilities and applications for microPADs. 
    more » « less
  4. Abstract Self‐folding broadly refers to the assembly of 3D structures by bending, curving, and folding without the need for manual or mechanized intervention. Self‐folding is scientifically interesting because self‐folded structures, from plant leaves to gut villi to cerebral gyri, abound in nature. From an engineering perspective, self‐folding of sub‐millimeter‐sized structures addresses major hurdles in nano‐ and micro‐manufacturing. This review focuses on self‐folding using surface tension or capillary forces derived from the minimization of liquid interfacial area. Due to favorable downscaling with length, at small scales capillary forces become extremely large relative to forces that scale with volume, such as gravity or inertia, and to forces that scale with area, such as elasticity. The major demonstrated classes of capillary force assisted self‐folding are discussed. These classes include the use of rigid or soft and micro‐ or nano‐patterned precursors that are assembled using a variety of liquids such as water, molten polymers, and liquid metals. The authors outline the underlying physics and highlight important design considerations that maximize rigidity, strength, and yield of the assembled structures. They also discuss applications of capillary self‐folding structures in engineering and medicine. Finally, the authors conclude by summarizing standing challenges and describing future trends. 
    more » « less
  5. In paper microfluidics, the development of smart and versatile switches is critical for the regulation of fluid flow across multiple channels. Past approaches in creating switches are limited by long response times, large actuation fluid volumes, and use of external control circuitry. We seek to mitigate these difficulties through the development of a unique actuator device made entirely out of chromatography paper and incorporated with folds. Selective wetting of the fold with an actuation fluid, either at the crest or trough, serves to raise or lower the actuator's tip and thus engage or break the fluidic contact between channels. Here the actuator's response time is dramatically reduced (within two seconds from wetting) and a very small volume of actuation fluid is consumed (four microliters). Using this actuation principle, we implement six switch configurations which can be grouped as single-pole single-throw (normally OFF and normally ON) and single-pole double-throw (with single and double break). By employing six actuators in parallel, an autonomous colorimetric assay is built to detect the presence of three analytes − glucose, protein, and nitrite − in artificial saliva. Finally, this work brings the concept of origami to paper microfluidics where multiple-fold geometries can be exploited for programmable switching of fluidic connections. 
    more » « less