skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A fast, reconfigurable flow switch for paper microfluidics based on selective wetting of folded paper actuator strips
In paper microfluidics, the development of smart and versatile switches is critical for the regulation of fluid flow across multiple channels. Past approaches in creating switches are limited by long response times, large actuation fluid volumes, and use of external control circuitry. We seek to mitigate these difficulties through the development of a unique actuator device made entirely out of chromatography paper and incorporated with folds. Selective wetting of the fold with an actuation fluid, either at the crest or trough, serves to raise or lower the actuator's tip and thus engage or break the fluidic contact between channels. Here the actuator's response time is dramatically reduced (within two seconds from wetting) and a very small volume of actuation fluid is consumed (four microliters). Using this actuation principle, we implement six switch configurations which can be grouped as single-pole single-throw (normally OFF and normally ON) and single-pole double-throw (with single and double break). By employing six actuators in parallel, an autonomous colorimetric assay is built to detect the presence of three analytes − glucose, protein, and nitrite − in artificial saliva. Finally, this work brings the concept of origami to paper microfluidics where multiple-fold geometries can be exploited for programmable switching of fluidic connections.  more » « less
Award ID(s):
1556370
PAR ID:
10334482
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Lab Chip
Volume:
17
Issue:
21
ISSN:
1473-0197
Page Range / eLocation ID:
3621 to 3633
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We demonstrate a self-folding paper robot with capillary force driven fluid. When water is sprayed on fluidic channels patterned on paper, the 2-D sheet of paper can be controllably self-folded into various 3-D structures; half-oval, circle, round-edge square, triangle, half-circle, and table. The self-folding paper sheet can be readily fabricated via a double-sided wax printing method, forming a bilayer structure of the fluidic channel and the hydrophobic wax, in which these two layers have different swelling/shrinking properties. The patterned paper performs folding actuation with water and unfolding behavior with evaporation without being mechanically manipulated by external forces or moments. Finally, we create a paper gripper based on this self-folding actuation, conveying a low-weight object. This report demonstrates the possibility of paper microfluidics for self-folding actuation and soft robotics. 
    more » « less
  2. Fluidic control systems target unique applications where conventional electronics fail. However, current fluidic control systems face challenges in accessible fabrication, reproducibility, and modifiable characteristics such as operating pressure and instability count. Herein, fused deposition‐modeled compliant mechanisms with flexing beams and soft linear actuators for fluid switching and the control of soft robotic systems are introduced. A linear actuator switches a compliant mechanism to cut off airflow through off‐the‐shelf tubing. The modular compliant logic devices can be configured as normally open or normally closed switches, as NOT, AND, and OR gates, and as nonvolatile memory elements. Their use is demonstrated in controlling a fluidic stepper motor, a worm‐like robot, and a fluidic display. These fluidic switches are printable using inexpensive desktop 3D printers, can be reliably reproduced in large quantities, and offer a wide range of modifiable parameters, including scalability, adaptability in operating pressure, and the tunability of instability counts for computational and memory functions. 
    more » « less
  3. A low cost millimeter-wave (mm-wave) electronically reconfigurable Reflect Array (RA) has been presented in this paper. Aperture-Coupled Patch (ACP) elements are used to forma 40×40 element reconfigurable RA operating in the 71-74 GHz range of the mm-wave band. A feeding network, integrated with Single-Pole, Single-Throw (SPST) switches is designed to adjust the phase of the reflected field for the ON/OFF state of the switch. The performance of the reconfigurable RA is evaluated by performing beam focusing at the near-field of the array. 
    more » « less
  4. Paper-based microfluidic devices are an attractive platform for developing low-cost, point-of-care diagnostic tools. As paper-based devices’ detection chemistries become more complex, more complicated devices are required, often entailing the sequential delivery of different liquids or reagents to reaction zones. Most research into flow control has been focused on introducing delays. However, delaying the flow can be problematic due to increased evaporation leading to sample loss. We report the use of a CO2 laser to uniformly etch the surface of the paper to modify wicking speeds in paper-based microfluidic devices. This technique can produce both wicking speed increases of up to 1.1× faster and decreases of up to 0.9× slower. Wicking speeds can be further enhanced by etching both sides of the paper, resulting in wicking 1.3× faster than unetched channels. Channels with lengthwise laser-etched grooves were also compared to uniformly etched channels, with the most heavily grooved channels wicking 1.9× faster than the fastest double-sided etched channels. Furthermore, sealing both sides of the channel in packing tape results in the most heavily etched channels, single-sided, double-sided, and grooved, wicking over 13× faster than unetched channels. By selectively etching individual channels, different combinations of sequential fluid delivery can be obtained without altering any channel geometry. Laser etching is a simple process that can be integrated into the patterning of the device and requires no additional materials or chemicals, enabling greater flow control for paper-based microfluidic devices. 
    more » « less
  5. Substrate-integrated waveguides (SIWs) have recently attracted increasing attention for the development of terahertz (THz) circuits and systems. However, conventional SIWs employ fixed metallic vias to form the waveguide sidewalls, resulting in limited tunability and reconfigurability. In this paper, we report a novel approach for the realization of high-performance tunable and/or reconfigurable THz SIW structures. In this approach, photo-induced free carriers are generated in a high-resistivity silicon pillar-array structure to form well-defined, highly conductive, vertical sidewalls. The wave propagation properties of these optically-defined photo-induced SIWs (PI-SIWs) have been evaluated using full-wave electromagnetic simulations. Higher-functionality THz components, including a single-pole double-throw switch and a phase shifter were also designed and simulated. Based on these example circuits, PI-SIWs using pillar-array structures appear to be attractive candidates for the development of tunable and reconfigurable THz components for THz sensing, imaging, and communication systems. 
    more » « less