- Award ID(s):
- 2029216
- PAR ID:
- 10377221
- Date Published:
- Journal Name:
- Proceedings of the Royal Society B: Biological Sciences
- Volume:
- 289
- Issue:
- 1980
- ISSN:
- 0962-8452
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Vertebrates have distinct tissues which are not present in invertebrate chordates nor other metazoans. The rise of these tissues also coincided with at least one round of whole-genome duplication as well as a suite of lineage-specific segmental duplications. Understanding whether novel genes lead to the origin and diversification of novel cell types, therefore, is of great importance in vertebrate evolution. Here we were particularly interested in the evolution of the vertebrate musculoskeletal system, the muscles and connective tissues that support a diversity of body plans. A major component of the musculoskeletal extracellular matrix (ECM) is fibrillar collagens, a gene family which has been greatly expanded upon in vertebrates. We thus asked whether the repertoire of fibrillar collagens in vertebrates reflects differences in the musculoskeletal system. To test this, we explored the diversity of fibrillar collagens in lamprey, a jawless vertebrate which diverged from jawed vertebrates (gnathostomes) more than five hundred million years ago and has undergone its own gene duplications. Some of the principal components of vertebrate hyaline cartilage are the fibrillar collagens type II and XI, but their presence in cartilage development across all vertebrate taxa has been disputed. We particularly emphasized the characterization of genes in the lamprey hyaline cartilage, testing if its collagen repertoire was similar to that in gnathostomes. Overall, we discovered thirteen fibrillar collagens from all known gene subfamilies in lamprey and were able to identify several lineage-specific duplications. We found that, while the collagen loci have undergone rearrangement, the Clade A genes have remained linked with the hox clusters, a phenomenon also seen in gnathostomes. While the lamprey muscular tissue was largely similar to that seen in gnathostomes, we saw considerable differences in the larval lamprey skeletal tissue, with distinct collagen combinations pertaining to different cartilage types. Our gene expression analyses were unable to identify type II collagen in the sea lamprey hyaline cartilage nor any other fibrillar collagen during chondrogenesis at the stages observed, meaning that sea lamprey likely no longer require these genes during early cartilage development. Our findings suggest that fibrillar collagens were multifunctional across the musculoskeletal system in the last common ancestor of vertebrates and have been largely conserved, but these genes alone cannot explain the origin of novel cell types.more » « less
-
Piganeau, Gwenael (Ed.)
Abstract Numerous factors shape the evolution of protein-coding genes, including shifts in the strength or type of selection following gene duplications or changes in the environment. Diatoms and other silicifying organisms use a family of silicon transporters (SITs) to import dissolved silicon from the environment. Freshwaters contain higher silicon levels than oceans, and marine diatoms have more efficient uptake kinetics and less silicon in their cell walls, making them better competitors for a scarce resource. We compiled SITs from 37 diatom genomes to characterize shifts in selection following gene duplications and marine–freshwater transitions. A deep gene duplication, which coincided with a whole-genome duplication, gave rise to two gene lineages. One of them (SIT1–2) is present in multiple copies in most species and is known to actively import silicon. These SITs have evolved under strong purifying selection that was relaxed in freshwater taxa. Episodic diversifying selection was detected but not associated with gene duplications or habitat shifts. In contrast, genes in the second SIT lineage (SIT3) were present in just half the species, the result of multiple losses. Despite conservation of SIT3 in some lineages for the past 90–100 million years, repeated losses, relaxed selection, and low expression highlighted the dispensability of SIT3, consistent with a model of deterioration and eventual loss due to relaxed selection on SIT3 expression. The extensive but relatively balanced history of duplications and losses, together with paralog-specific expression patterns, suggest diatoms continuously balance gene dosage and expression dynamics to optimize silicon transport across major environmental gradients.
-
Abstract Mosses (Bryophyta) are a key group occupying an important phylogenetic position in land plant (embryophyte) evolution. The class Bryopsida represents the most diversified lineage, containing more than 95% of modern mosses, whereas other classes are species‐poor. Two branches with large numbers of gene duplications were elucidated by phylogenomic analyses, one in the ancestry of all mosses and another before the separation of the Bryopsida, Polytrichopsida, and Tetraphidopsida. The analysis of the phylogenetic progression of duplicated paralogs retained on genomic syntenic regions in the
Physcomitrella patens genome confirmed that the whole‐genome duplication events WGD1 and WGD2 were re‐recognized as the ψ event and the Funarioideae duplication event, respectively. The ψ polyploidy event was tightly associated with the early diversification of Bryopsida, in the ancestor of Bryidae, Dicranidae, Timmiidae, and Funariidae. Together, four branches with large numbers of gene duplications were unveiled in the evolutionary past ofP. patens . Gene retention patterns following the four large‐scale duplications in different moss lineages were analyzed and discussed. Recurrent significant retention of stress‐related genes may have contributed to their adaption to distinct ecological environments and the evolutionary success of this early‐diverging land plant lineage. -
Abstract Different genes show different levels of expression variability. For example, highly expressed genes tend to exhibit less expression variability. Genes whose promoters have TATA box and initiator motifs tend to have increased expression variability. On the other hand, DNA methylation of transcriptional units, or gene body DNA methylation, is associated with reduced gene expression variability in many species. Interestingly, some insect lineages, most notably Diptera including the canonical model insect Drosophila melanogaster, have lost DNA methylation. Therefore, it is of interest to determine whether genomic features similarly influence gene expression variability in lineages with and without DNA methylation. We analyzed recently generated large-scale data sets in D. melanogaster and honey bee (Apis mellifera) to investigate these questions. Our analysis shows that increased gene expression levels are consistently associated with reduced expression variability in both species, while the presence of TATA box is consistently associated with increased gene expression variability. In contrast, initiator motifs and gene lengths have weak effects limited to some data sets. Importantly, we show that a sequence characteristics indicative of gene body DNA methylation is strongly and negatively associate with gene expression variability in honey bees, while it shows no such association in D. melanogaster. These results suggest the evolutionary loss of DNA methylation in some insect lineages has reshaped the molecular mechanisms concerning the regulation of gene expression variability.
-
Abstract Nitric oxide (NO) is a ubiquitous gaseous messenger, but we know little about its early evolution. Here, we analyzed NO synthases (NOS) in four different species of placozoans—one of the early-branching animal lineages. In contrast to other invertebrates studied,
Trichoplax andHoilungia have three distinct NOS genes, including PDZ domain-containing NOS. Using ultra-sensitive capillary electrophoresis assays, we quantified nitrites (products of NO oxidation) andl -citrulline (co-product of NO synthesis froml -arginine), which were affected by NOS inhibitors confirming the presence of functional enzymes inTrichoplax . Using fluorescent single-molecule in situ hybridization, we showed that distinct NOSs are expressed in different subpopulations of cells, with a noticeable distribution close to the edge regions ofTrichoplax . These data suggest both the compartmentalized release of NO and a greater diversity of cell types in placozoans than anticipated. NO receptor machinery includes both canonical and novel NIT-domain containing soluble guanylate cyclases as putative NO/nitrite/nitrate sensors. Thus, althoughTrichoplax andHoilungia exemplify the morphologically simplest free-living animals, the complexity of NO-cGMP-mediated signaling in Placozoa is greater to those in vertebrates. This situation illuminates multiple lineage-specific diversifications of NOSs and NO/nitrite/nitrate sensors from the common ancestor of Metazoa and the preservation of conservative NOS architecture from prokaryotic ancestors.