Integration of remote sensing techniques and Environmental Science methodologies in place-based curriculum design creates unique learning opportunities. To promote introductory-level student engagement with STEM, our team designed a set of multidisciplinary teaching materials to intensely examine a single location: the Lake Sidney Lanier watershed of North Georgia, USA. Using a combination of scientific approaches from a variety of disciplines, course exercises encourage students to holistically learn about environmental conditions within the watershed. In addition, the learning materials require students to contemplate the process of knowledge-formation by considering the limitations and potential applications of different scientific approaches. Remote sensing exercises are embedded throughout the course content and include analysis of historic aerial imagery, Landsat-derived dynamic surface water extent, google timelapse land cover change, Sentinel 2 spectral bands, and evaluation of lidar-derived topography. Learning resources were intentionally designed to seamlessly integrate remote sensing approaches and traditional environmental science methods. Fundamental spatial concepts of scale and connectivity are considered using interdisciplinary approaches and local data. The environmental science theory of landscape ecology is presented alongside remote sensing concepts of spatial and temporal resolution. This allows students to think about the diverse ways scientists understand scale, pattern, and the definition of “place”. Multiple datamore »
Remote Sensing of Water Quantity and Quality in Geospatial Education: Lake Sidney Lanier, Georgia, USA
To increase geospatial awareness about local water resources, our team developed learning resources for the 150 km² Lake Sidney Lanier reservoir located in North Georgia, USA. The reservoir is vital for hydroelectric power generation, recreation, tourism, and consumptive uses. Using geospatial analysis in Google Earth Engine (GEE), we analyzed precipitation trends in the watershed using Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) data. We also quantified expansion and contraction of reservoir surface area using Landsat-derived Global Surface Water data. As Lake Sidney Lanier is a managed reservoir, surface water extent fluctuations are related to climatic variables, consumptive use, and hydropower generation. Water temperature varies based on seasonality, water depth, water clarity, and lake stratification. Changing temperature dynamics affect ecosystem health and determine other important water quality parameters such as dissolved oxygen concentrations. Landsat 8 Thermal Infrared Sensor (TIRS) data were used to examine temperature trends over multiple years and investigate the timing of lake stratification and mixing. Highly turbid waters are associated with pollutants and lower water quality and can affect ecosystem productivity by minimizing sunlight penetration into the water column. Sentinel 2 MSI data were processed using a turbidity algorithm to analyze temporal trends and spatial correlations with more »
- Award ID(s):
- 1700568
- Publication Date:
- NSF-PAR ID:
- 10377229
- Journal Name:
- Apalachicola-Chattahoochee-Flint Waters Conference: Shared Resources in Changing Times. Albany, GA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Green Lake is the deepest natural inland lake in Wisconsin, with a maximum depth of about 72 meters. In the early 1900s, the lake was believed to have very good water quality (low nutrient concentrations and good water clarity) with low dissolved oxygen (DO) concentrations occurring in only the deepest part of the lake. Because of increased phosphorus (P) inputs from anthropogenic activities in its watershed, total phosphorus (TP) concentrations in the lake have increased; these changes have led to increased algal production and low DO concentrations not only in the deepest areas but also in the middle of the water column (metalimnion). The U.S. Geological Survey has routinely monitored the lake since 2004 and its tributaries since 1988. Results from this monitoring led the Wisconsin Department of Natural Resources (WDNR) to list the lake as impaired because of low DO concentrations in the metalimnion, and they identified elevated TP concentrations as the cause of impairment. As part of this study by the U.S. Geological Survey, in cooperation with the Green Lake Sanitary District, the lake and its tributaries were comprehensively sampled in 2017–18 to augment ongoing monitoring that would further describe the low DO concentrations in the lake (especiallymore »
-
BACKGROUND The availability of nitrogen (N) to plants and microbes has a major influence on the structure and function of ecosystems. Because N is an essential component of plant proteins, low N availability constrains the growth of plants and herbivores. To increase N availability, humans apply large amounts of fertilizer to agricultural systems. Losses from these systems, combined with atmospheric deposition of fossil fuel combustion products, introduce copious quantities of reactive N into ecosystems. The negative consequences of these anthropogenic N inputs—such as ecosystem eutrophication and reductions in terrestrial and aquatic biodiversity—are well documented. Yet although N availability is increasing in many locations, reactive N inputs are not evenly distributed globally. Furthermore, experiments and theory also suggest that global change factors such as elevated atmospheric CO 2 , rising temperatures, and altered precipitation and disturbance regimes can reduce the availability of N to plants and microbes in many terrestrial ecosystems. This can occur through increases in biotic demand for N or reductions in its supply to organisms. Reductions in N availability can be observed via several metrics, including lowered nitrogen concentrations ([N]) and isotope ratios (δ 15 N) in plant tissue, reduced rates of N mineralization, and reduced terrestrial Nmore »
-
Abstract Water temperature, ice cover, and lake stratification are important physical properties of lakes and reservoirs that control mixing as well as bio-geo-chemical processes and thus influence the water quality. We used an ensemble of vertical one-dimensional hydrodynamic lake models driven with regional climate projections to calculate water temperature, stratification, and ice cover under the A1B emission scenario for the German drinking water reservoir Lichtenberg. We used an analysis of variance method to estimate the contributions of the considered sources of uncertainty on the ensemble output. For all simulated variables, epistemic uncertainty, which is related to the model structure, is the dominant source throughout the simulation period. Nonetheless, the calculated trends are coherent among the five models and in line with historical observations. The ensemble predicts an increase in surface water temperature of 0.34 K per decade, a lengthening of the summer stratification of 3.2 days per decade, as well as decreased probabilities of the occurrence of ice cover and winter inverse stratification by 2100. These expected changes are likely to influence the water quality of the reservoir. Similar trends are to be expected in other reservoirs and lakes in comparable regions.
-
Abstract. The concentration of oxygen is fundamental to lake water quality and ecosystem functioning through its control over habitat availability for organisms, redox reactions, and recycling of organic material. In many eutrophic lakes, oxygen depletion in the bottom layer (hypolimnion) occurs annually during summer stratification. The temporal and spatial extent of summer hypolimnetic anoxia is determined by interactions between the lake and its external drivers (e.g., catchment characteristics, nutrient loads, meteorology) as well as internal feedback mechanisms (e.g., organic matter recycling, phytoplankton blooms). How these drivers interact to control the evolution of lake anoxia over decadal timescales will determine, in part, the future lake water quality. In this study, we used a vertical one-dimensional hydrodynamic–ecological model (GLM-AED2) coupled with a calibrated hydrological catchment model (PIHM-Lake) to simulate the thermal and water quality dynamics of the eutrophic Lake Mendota (USA) over a 37 year period. The calibration and validation of the lake model consisted of a global sensitivity evaluation as well as the application of an optimization algorithm to improve the fit between observed and simulated data. We calculated stability indices (Schmidt stability, Birgean work, stored internal heat), identified spring mixing and summer stratification periods, and quantified the energy required for stratification and mixing.more »