In this paper, in situ high-resolution electron backscattered diffraction (EBSD) is combined with concurrent atomistic-continuum (CAC) simulations to study the interactions between dislocation-mediated slip and grain boundaries (GBs) in Ni. It is found that the local stress associated with slip-GB intersections first increases upon the pileup of dislocations, then remains high even after the nucleation of dislocations in the neighboring grain, only relaxing after the nucleated dislocations propagate away from the GB due to more incoming dislocations participating in the pileup. The local stress relaxation is accompanied by an atomic-scale GB structure reconfiguration, which affects not only the subsequent dislocation transmission, but also the configuration of those dislocations away from the GB. These findings demonstrate the importance of incorporating local stress history at higher length scale models, such as crystal plasticity finite element. 
                        more » 
                        « less   
                    
                            
                            Coarse-grained atomistic modeling of dislocations and generalized crystal plasticity
                        
                    
    
            Recent developments in generalized continuum modeling methods ranging from coarse-grained atomistics to micromorphic theory offer potential to make more intimate physical contact with dislocation field problems framed at length scales on the order of microns. We explore a range of discrete dynamical and continuum mechanics approaches to crystal plasticity that are relevant to modeling behavior of populations of dislocations. Predictive atomistic and coarse-grained atomistic models are limited in terms of length and time scales that can be accessed; examples of the latter are discussed in terms of interactions of multiple dislocations in heterogeneous systems. Generalized continuum models alleviate restrictions to a significant extent in modeling larger scales of dislocation configurations and reactions, and are useful to consider effects of dislocation configuration on strength at characteristic length scales of sub-micron and above; these models require a combination of bottomup models and top-down experimental information to inform parameters and model form. The concurrent atomistic-continuum (CAC) method is extended to model complex multicomponent alloy systems using an average atom approach. Examples of CAC are presented, along with potential to assist in informing parameters of a recently developed micropolar crystal plasticity model based on a set of sub-micron dislocation field problems. Prospects for further developments are discussed. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1761553
- PAR ID:
- 10377271
- Date Published:
- Journal Name:
- Journal of Micromechanics and Molecular Physics
- Volume:
- 07
- Issue:
- 02
- ISSN:
- 2424-9130
- Page Range / eLocation ID:
- 103 to 125
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            In this paper, we present concurrent atomistic-continuum (CAC) simulations of the hydrogen (H) diffusion along a grain boundary (GB), nearby which a large population of dislocations are piled up, in a plastically deformed bi-crystalline bcc iron sample. With the microscale dislocation slip and the atomic structure evolution at the GB being simultaneously retained, our main findings are: (i) the accumulation of tens of dislocations near the H-charged GB can induce a local internal stress as high as 3 GPa; (ii) the more dislocations piled up at the GB, the slower the H diffusion ahead of the slip–GB intersection; and (iii) H atoms diffuse fast behind the pileup tip, get trapped within the GB, and diffuse slowly ahead of the pileup tip. The CAC simulation-predicted local H diffusivity, Dpileup−tip, and local stresses, σ, are correlated with each other. We then consolidate such correlations into a mechanics model by considering the dislocation pileup as an Eshelby inclusion. These findings will provide researchers with opportunities to: (a) characterize the interplay between plasticity, H diffusion, and crack initiation underlying H-induced cracking (HIC); (b) develop mechanism-based constitutive rules to be used in diffusion–plasticity coupling models for understanding the interplay between mechanical and mass transport in materials at the continuum level; and (c) connect the atomistic deformation physics of polycrystalline materials with their performance in aqueous environments, which is currently difficult to achieve in experiments.more » « less
- 
            In this work, we investigate misfit dislocations in PbTe/PbSe heteroepitaxial systems using the concurrent atomistic–continuum (CAC) method. A potential model containing the long-range Coulombic interaction and short-range Buckingham potential is developed for the system. By considering the minimum potential energy of relaxed interface structures for various initial conditions and PbTe layer thicknesses, the equilibrium structure of misfit dislocations and the dislocation spacings in PbTe/PbSe(001) heteroepitaxial thin films are obtained as a function of the PbTe layer thicknesses grown on a PbSe substrate. The critical layer thickness above which misfit dislocations inevitably form, the structure of the misfit dislocations at the interfaces, and the dependence of average dislocation spacing on PbTe layer thickness are obtained and discussed. The simulation results provide an explanation for the narrowing of the spread of the distribution of misfit dislocation spacing as layer thickness increases in PbTe/PbSe(001) heteroepitaxy.more » « less
- 
            In this work, we investigate misfit dislocations in PbTe/PbSe heteroepitaxial systems using the concurrent atomistic–continuum (CAC) method. A potential model containing the long-range Coulombic interaction and short-range Buckingham potential is developed for the system. By considering the minimum potential energy of relaxed interface structures for various initial conditions and PbTe layer thicknesses, the equilibrium structure of misfit dislocations and the dislocation spacings in PbTe/PbSe(001) heteroepitaxial thin films are obtained as a function of the PbTe layer thicknesses grown on a PbSe substrate. The critical layer thickness above which misfit dislocations inevitably form, the structure of the misfit dislocations at the interfaces, and the dependence of average dislocation spacing on PbTe layer thickness are obtained and discussed. The simulation results provide an explanation for the narrowing of the spread of the distribution of misfit dislocation spacing as layer thickness increases in PbTe/PbSe(001) heteroepitaxy.more » « less
- 
            Abstract Comprehensive investigations of crystalline systems often require methods bridging atomistic and continuum scales. In this context, coarse-grained mesoscale approaches are of particular interest as they allow the examination of large systems and time scales while retaining some microscopic details. The so-called phase-field crystal (PFC) model conveniently describes crystals at diffusive time scales through a continuous periodic field which varies on atomic scales and is related to the atomic number density. To go beyond the restrictive atomic length scales of the PFC model, a complex amplitude formulation was first developed by Goldenfeld et al (2005 Phys. Rev. E 72 020601). While focusing on length scales larger than the lattice parameter, this approach can describe crystalline defects, interfaces, and lattice deformations. It has been used to examine many phenomena including liquid/solid fronts, grain boundary energies, and strained films. This topical review focuses on this amplitude expansion of the PFC model and its developments. An overview of the derivation, connection to the continuum limit, representative applications, and extensions is presented. A few practical aspects, such as suitable numerical methods and examples, are illustrated as well. Finally, the capabilities and bounds of the model, current challenges, and future perspectives are addressed.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    