Accurate representation of air‐sea interaction is crucial to numerical prediction of the ocean, weather, and climate. Sea surface temperature (SST) gradients and surface currents in the oceanic mesoscale regime are known to have significant influence on air‐sea fluxes of momentum. Studies based on high‐resolution numerical models and observations reveal that SST gradients and surface currents in the submesoscale regime are much stronger than those in the mesoscale. However, the feedback between the submesoscale processes and the air‐sea turbulent fluxes is not well understood. To quantitatively assess the responses between air‐sea flux of momentum and submesoscale processes, a non‐hydrostatic ocean model is implemented in this study. The inclusion of SST gradients and surface currents in air‐sea bulk fluxes are argued to be significant for modeling accurate wind stress in the submesoscale regime. Taking both into account, this study shows that the linear relationship between wind stress curl/divergence and crosswind/downwind SST gradients existing in the mesoscale regime is not obvious in the submesoscale. Instead, a linear relationship between wind stress curl/divergence and surface current curl/divergence is revealed in the submesoscale. Furthermore, the magnitude of wind stress curl introduced by submesoscale processes is much greater than that presented by mesoscale processes. Another key finding is that tracer subduction and potential vorticity distribution in the submesoscale is susceptible to submesoscale‐modified air‐sea turbulent momentum flux. This study serves as a starting point in investigating the feedbacks between atmospheric and oceanic submesoscale processes.
more » « less- PAR ID:
- 10377304
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Oceans
- Volume:
- 127
- Issue:
- 10
- ISSN:
- 2169-9275
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract We analyze the role of mesoscale heat advection in a mixed layer (ML) heat budget, using a regional high-resolution coupled model with realistic atmospheric forcing and an idealized ocean component. The model represents two regions in the Southern Ocean, one with strong ocean currents and the other with weak ocean currents. We conclude that heat advection by oceanic currents creates mesoscale anomalies in sea surface temperature (SST), while the atmospheric turbulent heat fluxes dampen these SST anomalies. This relationship depends on the spatial scale, the strength of the currents, and the mixed layer depth (MLD). At the oceanic mesoscale, there is a positive correlation between the advection and SST anomalies, especially when the currents are strong overall. For large-scale zonal anomalies, the ML-integrated advection determines the heating/cooling of the ML, while the SST anomalies tend to be larger in size than the advection and the spatial correlation between these two fields is weak. The effects of atmospheric forcing on the ocean are modulated by the MLD variability. The significance of Ekman advection and diabatic heating is secondary to geostrophic advection except in summer when the MLD is shallow. This study links heat advection, SST anomalies, and air–sea heat fluxes at ocean mesoscales, and emphasizes the overall dominance of intrinsic oceanic variability in mesoscale air–sea heat exchange in the Southern Ocean.more » « less
-
Abstract Between 5% and 25% of the total momentum transferred between the atmosphere and ocean is transmitted via the growth of long surface gravity waves called “swell.” In this paper, we use large-eddy simulations to show that swell-transmitted momentum excites near-inertial waves and drives turbulent mixing that deepens a rotating, stratified, turbulent ocean surface boundary layer. We find that swell-transmitted currents are less effective at producing turbulence and mixing the boundary layer than currents driven by an effective surface stress. Overall, however, the differences between swell-driven and surface-stress-driven boundary layers are relatively minor. In consequence, our results corroborate assumptions made in Earth system models that neglect the vertical structure of swell-transmitted momentum fluxes and instead parameterize all air–sea momentum transfer processes with an effective surface stress.
-
Abstract The thermal component of oceanic eddy available potential energy (EPE) generation due to air‐sea interaction is proportional to the product of anomalous sea surface temperature (SST) and net air‐sea heat flux (SHF). In this study we assess EPE generation and its timescale and space‐scale dependence from observations and a high‐resolution coupled climate model. A dichotomy exists in the literature with respect to the sign of this term, that is, whether it is a source or a sink of EPE. We resolve this dichotomy by partitioning the SST and net heat flux into climatological mean, climatological seasonal cycle, and remaining transient contributions, thereby separating the mesoscale eddy variability from the forced seasonal cycle. In this decomposition the mesoscale air‐sea SST‐SHF feedbacks act as a 0.1 TW global sink of EPE. In regions of the ocean with a large seasonal cycle, for example, midlatitudes of the Northern Hemisphere, the EPE generation by the forced seasonal cycle exceeds the mesoscale variability sink, such that the global generation by seasonal plus eddy variability acts as a 0.8 TW source. EPE destruction is largest in the midlatitude western boundary currents due to mesoscale air‐sea interaction and in the tropical Pacific where SST variability is due mainly to the El Niño–Southern Oscillation. The EPE sink in western boundary currents is spatially aligned with SST gradients and offset to the poleward side of currents, while the mean and seasonal generation are aligned with the warm core of the current. By successively smoothing the data in space and time we find that half of the EPE sink is confined to timescales less than annual and length scales less than 2°, within the oceanic mesoscale band.
-
Abstract In the decades, the use of scatterometer data allowed to demonstrate the global ubiquity of the ocean mesoscale thermal feedback (TFB) and current feedback (CFB) effects on surface winds and stress. Understanding these air‐sea interactions is of uttermost importance as the induced atmospheric anomalies partly control the ocean circulation and thus can influence the Earth climate. Whether the TFB and CFB effects can be disentangled, and whether satellite scatterometers can properly reveal them, remain rather unclear. Here, using satellite observations and ocean‐atmosphere coupled mesoscale simulations over 45°S to 45°N, we show that the CFB effect can be properly characterized and unraveled from that due to the TFB. We demonstrate that the TFB can be unambiguously characterized by its effect on the stress (and wind) divergence and magnitude. However, its effect on the wind and stress curl is contaminated by the CFB and thus cannot be estimated from scatterometer data. Finally, because scatterometers provide equivalent neutral stability winds relative to the oceanic currents, they cannot characterize adequately the CFB wind response and overestimate the TFB wind response by ≈25%. Surface stress appears to be the more appropriate variable to consider from scatterometer data.
-
Abstract The intensity of tropical cyclones is sensitive to the air-sea fluxes of enthalpy and momentum. Sea spray plays a critical role in mediating enthalpy and momentum fluxes over the ocean’s surface at high wind speeds, and parameterizing the influence of sea spray is a crucial component of any air-sea interaction scheme used for the high wind regime where sea spray is ubiquitous. Many studies have proposed parameterizations of air-sea flux that incorporate the microphysics of sea spray evaporation and the mechanics of sea spray stress. Unfortunately, there is not yet a consensus on which parameterization best represents air-sea exchange in tropical cyclones, and the different proposed parameterizations can yield substantially different tropical cyclone intensities. This paper seeks to review the developments in parameterizations of the sea spray-mediated enthalpy and momentum fluxes for the high wind speed regime and to synthesize key findings that are common across many investigations.more » « less