skip to main content

Title: Model-agnostic vs. Model-intrinsic Interpretability for Explainable Product Search
Product retrieval systems have served as the main entry for customers to discover and purchase products online. With increasing concerns on the transparency and accountability of AI systems, studies on explainable information retrieval has received more and more attention in the research community. Interestingly, in the domain of e-commerce, despite the extensive studies on explainable product recommendation, the studies of explainable product search is still in an early stage. In this paper, we study how to construct effective explainable product search by comparing model-agnostic explanation paradigms with model-intrinsic paradigms and analyzing the important factors that determine the performance of product search explanations. We propose an explainable product search model with model-intrinsic interpretability and conduct crowdsourcing to compare it with the state-of-the-art explainable product search model with model-agnostic interpretability. We observe that both paradigms have their own advantages and the effectiveness of search explanations on different properties are affected by different factors. For example, explanation fidelity is more important for user's overall satisfaction on the system while explanation novelty may be more useful in attracting user purchases. These findings could have important implications for the future studies and design of explainable product search engines.  more » « less
Award ID(s):
Author(s) / Creator(s):
Date Published:
Journal Name:
CIKM '21: Proceedings of the 30th ACM International Conference on Information & Knowledge Management
Page Range / eLocation ID:
5 to 15
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. State-of-the-art industrial-level recommender system applications mostly adopt complicated model structures such as deep neural networks. While this helps with the model performance, the lack of system explainability caused by these nearly blackbox models also raises concerns and potentially weakens the users’ trust in the system. Existing work on explainable recommendation mostly focuses on designing interpretable model structures to generate model-intrinsic explanations. However, most of them have complex structures, and it is difficult to directly apply these designs onto existing recommendation applications due to the effectiveness and efficiency concerns. However, while there have been some studies on explaining recommendation models without knowing their internal structures (i.e., model-agnostic explanations), these methods have been criticized for not reflecting the actual reasoning process of the recommendation model or, in other words, faithfulness . How to develop model-agnostic explanation methods and evaluate them in terms of faithfulness is mostly unknown. In this work, we propose a reusable evaluation pipeline for model-agnostic explainable recommendation. Our pipeline evaluates the quality of model-agnostic explanation from the perspectives of faithfulness and scrutability. We further propose a model-agnostic explanation framework for recommendation and verify it with the proposed evaluation pipeline. Extensive experiments on public datasets demonstrate that our model-agnostic framework is able to generate explanations that are faithful to the recommendation model. We additionally provide quantitative and qualitative study to show that our explanation framework could enhance the scrutability of blackbox recommendation model. With proper modification, our evaluation pipeline and model-agnostic explanation framework could be easily migrated to existing applications. Through this work, we hope to encourage the community to focus more on faithfulness evaluation of explainable recommender systems. 
    more » « less
  2. While machine learning classifier models become more widely adopted, opaque “black-box” models remain mostly inscrutable for a variety of reasons. Since their applications increasingly involve decisions impacting the lives of humans, there is increasing demand that their predictions be understandable to humans. Of particular interest in eXplainable AI (XAI) is the interpretability of explanations, i.e., that a model’s prediction should be understandable in terms of the input features. One popular approach is LIME, which offers a model-agnostic framework for explaining any classifier. However, questions remain about the limitations and vulnerabilities of such post-hoc explainers. We have built a tool for generating synthetic tabular data sets which enables us to probe the explanation system opportunistically based on its architecture. In this paper, we report on our success in revealing a scenario where LIME’s explanation violates local faithfulness. 
    more » « less
  3. Recent years have witnessed the growing literature in empirical evaluation of explainable AI (XAI) methods. This study contributes to this ongoing conversation by presenting a comparison on the effects of a set of established XAI methods in AI-assisted decision making. Based on our review of previous literature, we highlight three desirable properties that ideal AI explanations should satisfy — improve people’s understanding of the AI model, help people recognize the model uncertainty, and support people’s calibrated trust in the model. Through three randomized controlled experiments, we evaluate whether four types of common model-agnostic explainable AI methods satisfy these properties on two types of AI models of varying levels of complexity, and in two kinds of decision making contexts where people perceive themselves as having different levels of domain expertise. Our results demonstrate that many AI explanations do not satisfy any of the desirable properties when used on decision making tasks that people have little domain expertise in. On decision making tasks that people are more knowledgeable, the feature contribution explanation is shown to satisfy more desiderata of AI explanations, even when the AI model is inherently complex. We conclude by discussing the implications of our study for improving the design of XAI methods to better support human decision making, and for advancing more rigorous empirical evaluation of XAI methods. 
    more » « less
  4. Most of the work on interpretable machine learning has focused on designing either inherently interpretable models, which typically trade-off accuracy for interpretability, or post-hoc explanation systems, whose explanation quality can be unpredictable. Our method, ExpO, is a hybridization of these approaches that regularizes a model for explanation quality at training time. Importantly, these regularizers are differentiable, model agnostic, and require no domain knowledge to define. We demonstrate that post-hoc explanations for ExpO-regularized models have better explanation quality, as measured by the common fidelity and stability metrics. We verify that improving these metrics leads to significantly more useful explanations with a user study on a realistic task. 
    more » « less
  5. Abstract

    With increasing interest in explaining machine learning (ML) models, this paper synthesizes many topics related to ML explainability. We distinguish explainability from interpretability, local from global explainability, and feature importance versus feature relevance. We demonstrate and visualize different explanation methods, how to interpret them, and provide a complete Python package (scikit-explain) to allow future researchers and model developers to explore these explainability methods. The explainability methods include Shapley additive explanations (SHAP), Shapley additive global explanation (SAGE), and accumulated local effects (ALE). Our focus is primarily on Shapley-based techniques, which serve as a unifying framework for various existing methods to enhance model explainability. For example, SHAP unifies methods like local interpretable model-agnostic explanations (LIME) and tree interpreter for local explainability, while SAGE unifies the different variations of permutation importance for global explainability. We provide a short tutorial for explaining ML models using three disparate datasets: a convection-allowing model dataset for severe weather prediction, a nowcasting dataset for subfreezing road surface prediction, and satellite-based data for lightning prediction. In addition, we showcase the adverse effects that correlated features can have on the explainability of a model. Finally, we demonstrate the notion of evaluating model impacts of feature groups instead of individual features. Evaluating the feature groups mitigates the impacts of feature correlations and can provide a more holistic understanding of the model. All code, models, and data used in this study are freely available to accelerate the adoption of machine learning explainability in the atmospheric and other environmental sciences.

    more » « less