Commuting integral and differential operators connect the topics of signal processing, random matrix theory, and integrable systems. Previously, the construction of such pairs was based on direct calculation and concerned concrete special cases, leaving behind important families such as the operators associated to the rational solutions of the Korteweg–de Vries (KdV) equation. We prove a general theorem that the integral operator associated to every wave function in the infinite-dimensional adelic Grassmannian G r a d of Wilson always reflects a differential operator (in the sense of Definition 1 below). This intrinsic property is shown to follow from the symmetries of Grassmannians of Kadomtsev–Petviashvili (KP) wave functions, where the direct commutativity property holds for operators associated to wave functions fixed by Wilson’s sign involution but is violated in general. Based on this result, we prove a second main theorem that the integral operators in the computation of the singular values of the truncated generalized Laplace transforms associated to all bispectral wave functions of rank 1 reflect a differential operator. A 9 0 ○ rotation argument is used to prove a third main theorem that the integral operators in the computation of the singular values of the truncated generalized Fourier transforms associated to all such KP wave functions commute with a differential operator. These methods produce vast collections of integral operators with prolate-spheroidal properties, including as special cases the integral operators associated to all rational solutions of the KdV and KP hierarchies considered by [Airault, McKean, and Moser, Commun. Pure Appl. Math. 30, 95–148 (1977)] and [Krichever, Funkcional. Anal. i Priložen. 12, 76–78 (1978)], respectively, in the late 1970s. Many examples are presented. 
                        more » 
                        « less   
                    
                            
                            Fast algorithms using orthogonal polynomials
                        
                    
    
            We review recent advances in algorithms for quadrature, transforms, differential equations and singular integral equations using orthogonal polynomials. Quadrature based on asymptotics has facilitated optimal complexity quadrature rules, allowing for efficient computation of quadrature rules with millions of nodes. Transforms based on rank structures in change-of-basis operators allow for quasi-optimal complexity, including in multivariate settings such as on triangles and for spherical harmonics. Ordinary and partial differential equations can be solved via sparse linear algebra when set up using orthogonal polynomials as a basis, provided that care is taken with the weights of orthogonality. A similar idea, together with low-rank approximation, gives an efficient method for solving singular integral equations. These techniques can be combined to produce high-performance codes for a wide range of problems that appear in applications. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1818757
- PAR ID:
- 10377347
- Date Published:
- Journal Name:
- Acta Numerica
- Volume:
- 29
- ISSN:
- 0962-4929
- Page Range / eLocation ID:
- 573 to 699
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            We describe a novel meshless Galerkin method for numerically solving semilinear parabolic equations on spheres. The new approximation method is based upon a discretization in space using spherical basis functions in a Galerkin approximation. As our spatial approximation spaces are built with spherical basis functions, they can be of arbitrary order and do not require the construction of an underlying mesh. We will establish convergence of the meshless method by adapting, to the sphere, a convergence result due to Thom\'ee and Wahlbin. To do this requires proving new approximation results, including a novel inverse or Nikolskii inequality for spherical basis functions. We also discuss how the integrals in the Galerkin method can accurately and more efficiently be computed using a recently developed quadrature rule. These new quadrature formulas also apply to Galerkin approximations of elliptic partial differential equations on the sphere. Finally, we provide several numerical examples, including the Allen-Cahn for the sphere.more » « less
- 
            null (Ed.)Abstract We describe a suite of fast algorithms for evaluating Jacobi polynomials, applying the corresponding discrete Sturm–Liouville eigentransforms and calculating Gauss–Jacobi quadrature rules. Our approach, which applies in the case in which both of the parameters $$\alpha $$ and $$\beta $$ in Jacobi’s differential equation are of magnitude less than $1/2$, is based on the well-known fact that in this regime Jacobi’s differential equation admits a nonoscillatory phase function that can be loosely approximated via an affine function over much of its domain. We illustrate this with several numerical experiments, the source code for which is publicly available.more » « less
- 
            Abstract In this paper, we develop a high-order well-balanced discontinuous Galerkin method for hyperbolic balance laws based on the Gauss-Lobatto quadrature rules. Important applications of the method include preserving the non-hydrostatic equilibria of shallow water equations with non-flat bottom topography and Euler equations in gravitational fields. The well-balanced property is achieved through two essential components. First, the source term is reformulated in a flux-gradient form in the local reference equilibrium state to mimic the true flux gradient in the balance laws. Consequently, the source term integral is discretized using the same approach as the flux integral at Gauss-Lobatto quadrature points, ensuring that the source term is exactly balanced by the flux in equilibrium states. Our method differs from existing well-balanced DG methods for shallow water equations with non-hydrostatic equilibria, particularly in the aspect that it does not require the decomposition of the source term integral. The effectiveness of our method is demonstrated through ample numerical tests.more » « less
- 
            Abstract We present two new classes of orthogonal functions, log orthogonal functions and generalized log orthogonal functions, which are constructed by applying a $$\log $$ mapping to Laguerre polynomials. We develop basic approximation theory for these new orthogonal functions, and apply them to solve several typical fractional differential equations whose solutions exhibit weak singularities. Our error analysis and numerical results show that our methods based on the new orthogonal functions are particularly suitable for functions that have weak singularities at one endpoint and can lead to exponential convergence rate, as opposed to low algebraic rates if usual orthogonal polynomials are used.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    