Objective Data-informed decision making is valued among school districts, but challenges remain for local health departments to provide data, especially during a pandemic. We describe the rapid planning and deployment of a school-based COVID-19 surveillance system in a metropolitan US county. Methods In 2020, we used several data sources to construct disease- and school-based indicators for COVID-19 surveillance in Franklin County, an urban county in central Ohio. We collected, processed, analyzed, and visualized data in the COVID-19 Analytics and Targeted Surveillance System for Schools (CATS). CATS included web-based applications (public and secure versions), automated alerts, and weekly reports for the general public and decision makers, including school administrators, school boards, and local health departments. Results We deployed a pilot version of CATS in less than 2 months (August–September 2020) and added 21 school districts in central Ohio (15 in Franklin County and 6 outside the county) into CATS during the subsequent months. Public-facing web-based applications provided parents and students with local information for data-informed decision making. We created an algorithm to enable local health departments to precisely identify school districts and school buildings at high risk of an outbreak and active SARS-CoV-2 transmission in school settings. Practice Implications Piloting a surveillance system with diverse school districts helps scale up to other districts. Leveraging past relationships and identifying emerging partner needs were critical to rapid and sustainable collaboration. Valuing diverse skill sets is key to rapid deployment of proactive and innovative public health practices during a global pandemic.
more »
« less
Evaluating Completeness of Foodborne Outbreak Reporting in the United States, 1998–2019
Public health agencies routinely collect time-referenced records to describe and compare foodborne outbreak characteristics. Few studies provide comprehensive metadata to inform researchers of data limitations prior to conducting statistical modeling. We described the completeness of 103 variables for 22,792 outbreaks publicly reported by the United States Centers for Disease Control and Prevention’s (US CDC’s) electronic Foodborne Outbreak Reporting System (eFORS) and National Outbreak Reporting System (NORS). We compared monthly trends of completeness during eFORS (1998–2008) and NORS (2009–2019) reporting periods using segmented time series analyses adjusted for seasonality. We quantified the overall, annual, and monthly completeness as the percentage of outbreaks with blank records per our study period, calendar year, and study month, respectively. We found that outbreaks of unknown genus (n = 7401), Norovirus (n = 6414), Salmonella (n = 2872), Clostridium (n = 944), and multiple genera (n = 779) accounted for 80.77% of all outbreaks. However, crude completeness ranged from 46.06% to 60.19% across the 103 variables assessed. Variables with the lowest crude completeness (ranging 3.32–6.98%) included pathogen, specimen etiological testing, and secondary transmission traceback information. Variables with low (<35%) average monthly completeness during eFORS increased by 0.33–0.40%/month after transitioning to NORS, most likely due to the expansion of surveillance capacity and coverage within the new reporting system. Examining completeness metrics in outbreak surveillance systems provides essential information on the availability of data for public reuse. These metadata offer important insights for public health statisticians and modelers to precisely monitor and track the geographic spread, event duration, and illness intensity of foodborne outbreaks.
more »
« less
- Award ID(s):
- 2018149
- PAR ID:
- 10377370
- Date Published:
- Journal Name:
- International Journal of Environmental Research and Public Health
- Volume:
- 19
- Issue:
- 5
- ISSN:
- 1660-4601
- Page Range / eLocation ID:
- 2898
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Existing collaborations among public health practitioners, veterinarians, and ecologists do not sufficiently consider illegal wildlife trade in their surveillance, biosafety, and security (SB&S) efforts even though the risks to health and biodiversity from these threats are significant. We highlight multiple cases to illustrate the risks posed by existing gaps in understanding the intersectionality of the illegal wildlife trade and zoonotic disease transmission. We argue for more integrative science in support of decision-making using the One Health approach. Opportunities abound to apply transdisciplinary science to sustainable wildlife trade policy and programming, such as combining on-the-ground monitoring of health, environmental, and social conditions with an understanding of the operational and spatial dynamics of illicit wildlife trade. We advocate for (1) a surveillance sample management system for enhanced diagnostic efficiency in collaboration with diverse and local partners that can help establish new or link existing surveillance networks, outbreak analysis, and risk mitigation strategies; (2) novel analytical tools and decision support models that can enhance self-directed local livelihoods by addressing monitoring, detection, prevention, interdiction, and remediation; (3) enhanced capacity to promote joint SB&S efforts that can encourage improved human and animal health, timely reporting, emerging disease detection, and outbreak response; and, (4) enhanced monitoring of illicit wildlife trade and supply chains across the heterogeneous context within which they occur. By integrating more diverse scientific disciplines, and their respective scientists with indigenous people and local community insight and risk assessment data, we can help promote a more sustainable and equitable wildlife trade.more » « less
-
Objectives: Rapid evolution of SARS-CoV-2 has resulted in the emergence of numerous variants, posing significant challenges to public health surveillance. Clinical genome sequencing, while valuable, has limitations in capturing the full epidemiological dynamics of circulating variants in the general population. This study aimed to monitor the SARS-CoV-2 variant community dynamics and evolution using receptor-binding domain (RBD) amplicon sequencing of wastewater samples. Methods: We sequenced wastewater from El Paso, Texas, over 17 months, compared the sequencing data with clinical genome data, and performed biodiversity analysis to reveal SARS-CoV-2 variant dynamics and evolution. Results: We identified 91 variants and observed waves of dominant variants transitioning from BA.2 to BA.2.12.1, BA.4&5, BQ.1, and XBB.1.5. Comparison with clinical genome sequencing data revealed earlier detection of variants and identification of unreported outbreaks. Our results also showed strong consistency with clinical data for dominant variants at the local, state, and national levels. Alpha diversity analyses revealed significant seasonal variations, with the highest diversity observed in winter. By segmenting the outbreak into lag, growth, stationary, and decline phases, we found higher variant diversity during the lag phase, likely due to lower inter-variant competition preceding outbreak growth. Conclusions: Our findings underscore the importance of low transmission periods in facilitating rapid mutation and variant evolution. Our approach, integrating RBD amplicon sequencing with wastewater surveillance, demonstrates effectiveness in tracking viral evolution and understanding variant emergence, thus enhancing public health preparedness.more » « less
-
Use of Twitter data to improve Zika virus surveillance in the United States during the 2016 epidemicZika virus (ZIKV) is an emerging mosquito-borne arbovirus that can produce serious public health consequences. In 2016, ZIKV caused an epidemic in many countries around the world, including the United States. ZIKV surveillance and vector control is essential to combating future epidemics. However, challenges relating to the timely publication of case reports significantly limit the effectiveness of current surveillance methods. In many countries with poor infrastructure, established systems for case reporting often do not exist. Previous studies investigating the H1N1 pandemic, general influenza and the recent Ebola outbreak have demonstrated that time- and geo-tagged Twitter data, which is immediately available, can be utilized to overcome these limitations.more » « less
-
Evaluating public health interventions during disease outbreaks requires an understanding of the spatial patterns underlying epidemiological processes. In this study, we explore how Large Language Models (LLMs) can leverage spatial understanding and contextual reasoning to support spatially-disaggregated epidemiological simulations. We present an approach in which a system dynamics model queries an LLM at key decision points to determine appropriate mitigation strategies, informed by local profiles and the current outbreak status, and incorporates these strategies into the simulations. Through a series of experiments with COVID-19 data from San Diego County, we show how different LLMs perform in tasks requiring spatial adaptation of mitigation strategies, and how incorporating connectivity information through Retrieval-Augmented Generation (RAG) enhances the performance of these customizations. The results reveal significant differences among LLMs in their ability to account for spatial structure and optimize mitigation strategies accordingly. This highlights the importance of selecting the right model and enhancing it with relevant contextual information for effective public health interventions.more » « less
An official website of the United States government

