skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Sensor technologies for quality control in engineered tissue manufacturing
Abstract The use of engineered cells, tissues, and organs has the opportunity to change the way injuries and diseases are treated. Commercialization of these groundbreaking technologies has been limited in part by the complex and costly nature of their manufacture. Process-related variability and even small changes in the manufacturing process of a living product will impact its quality. Without real-time integrated detection, the magnitude and mechanism of that impact are largely unknown. Real-time and non-destructive sensor technologies are key for in-process insight and ensuring a consistent product throughout commercial scale-up and/or scale-out. The application of a measurement technology into a manufacturing process requires cell and tissue developers to understand the best way to apply a sensor to their process, and for sensor manufacturers to understand the design requirements and end-user needs. Furthermore, sensors to monitor component cells’ health and phenotype need to be compatible with novel integrated and automated manufacturing equipment. This review summarizes commercially relevant sensor technologies that can detect meaningful quality attributes during the manufacturing of regenerative medicine products, the gaps within each technology, and sensor considerations for manufacturing.  more » « less
Award ID(s):
2119237 1757371 1945218
PAR ID:
10377410
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Biofabrication
Volume:
15
Issue:
1
ISSN:
1758-5082
Page Range / eLocation ID:
Article No. 012001
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This review describes key milestones related to the production of biopharmaceuticals—therapies manufactured using recombinant DNA technology. The market for biopharmaceuticals has grown significantly since the first biopharmaceutical approval in 1982, and the scientific maturity of the technologies used in their manufacturing processes has grown concomitantly. Early processes relied on established unit operations, with research focused on process scale-up and improved culture productivity. In the early 2000s, changes in regulatory frameworks and the introduction of Quality by Design emphasized the importance of developing manufacturing processes to deliver a desired product quality profile. As a result, companies adopted platform processes and focused on understanding the dynamic interplay between product quality and processing conditions. The consistent and reproducible manufacturing processes of today's biopharmaceutical industry have set high standards for product efficacy, quality, and safety, and as the industry continues to evolve in the coming decade, intensified processing capabilities for an expanded range of therapeutic modalities will likely become routine. 
    more » « less
  2. Abstract Nascent advanced therapies, including regenerative medicine and cell and gene therapies, rely on the production of cells in bioreactors that are highly heterogeneous in both space and time. Unfortunately, advanced therapies have failed to reach a wide patient population due to unreliable manufacturing processes that result in batch variability and cost prohibitive production. This can be attributed largely to a void in existing process analytical technologies (PATs) capable of characterizing the secreted critical quality attribute (CQA) biomolecules that correlate with the final product quality. The Dynamic Sampling Platform (DSP) is a PAT for cell bioreactor monitoring that can be coupled to a suite of sensor techniques to provide real‐time feedback on spatial and temporal CQA content in situ. In this study, DSP is coupled with electrospray ionization mass spectrometry and direct‐from‐culture sampling to obtain measures of CQA content in bulk media and the cell microenvironment throughout the entire cell culture process (≈3 weeks). Post hoc analysis of this real‐time data reveals that sampling from the microenvironment enables cell state monitoring (e.g., confluence, differentiation). These results demonstrate that an effective PAT should incorporate both spatial and temporal resolution to serve as an effective input for feedback control in biomanufacturing. 
    more » « less
  3. In recent years, manufacturing industries (e.g., medical, aerospace, and automobile) have been changing their manufacturing process to small-quantity batch production to flexibly cope with fluctuations in demand. Therefore, many companies are trying to produce products by introducing 3D printing technology into the manufacturing process. The 3D printing process is based on additive manufacturing (AM), which can fabricate complex shapes and reduce material waste and production time. Although AM has many advantages, its product quality is poor compared to conventional manufacturing systems. This study proposes a methodology to improve the quality of AM products based on data analysis. The targeted quality of AM is the surface roughness of the stacked wall. Surface roughness is one of the important quality indicators and can cause short product life and poor structure performance. To control the surface roughness, the resultant surface roughness needs to be predicted in advance depending on the process parameters. Various analysis methods such as data pre-processing and deep neural networks (DNN) combined with sensor data are used to predict surface roughness in the proposed methodology. The proposed methodology is applied to field data from operated wire + arc additive manufacturing (WAAM), and the analysis result shows its effectiveness, with a mean absolute percentage error (MAPE) of 1.93%. 
    more » « less
  4. Abstract The advancement of sensing technology enables efficient data collection from manufacturing systems for monitoring and control. Furthermore, with the rapid development of the Internet of Things (IoT) and information technologies, more and more manufacturing systems become cyber-enabled, facilitating real-time data sharing and information exchange, which significantly improves the flexibility and efficiency of manufacturing systems. However, the cyber-enabled environment may pose the collected sensor data under high risks of cyber-physical attacks during the data and information sharing. Specifically, cyber-physical attacks could target the manufacturing process and/or the data transmission process to maliciously tamper the sensor data, resulting in false alarms or failures in anomaly detection in monitoring. In addition, the cyber-physical attacks may also enable illegal data access without authorization and cause the leakage of key product/process information. Therefore, it becomes critical to develop an effective approach to protect data from these attacks so that the cyber-physical security of the manufacturing systems could be assured in the cyber-enabled environment. To achieve this goal, this paper proposes an integrative blockchain-enabled data protection method by leveraging camouflaged asymmetry encryption. A real-world case study that protects cyber-physical security of collected sensor data in additive manufacturing is presented to demonstrate the effectiveness of the proposed method. The results demonstrate that malicious tampering could be detected in a relatively short time (less than 0.05ms) and the risk of unauthorized data access is significantly reduced as well. 
    more » « less
  5. null (Ed.)
    Smart manufacturing, which integrates a multi-sensing system with physical manufacturing processes, has been widely adopted in the industry to support online and real-time decision making to improve manufacturing quality. A multi-sensing system for each specific manufacturing process can efficiently collect the in situ process variables from different sensor modalities to reflect the process variations in real-time. However, in practice, we usually do not have enough budget to equip too many sensors in each manufacturing process due to the cost consideration. Moreover, it is also important to better interpret the relationship between the sensing modalities and the quality variables based on the model. Therefore, it is necessary to model the quality-process relationship by selecting the most relevant sensor modalities with the specific quality measurement from the multi-modal sensing system in smart manufacturing. In this research, we adopted the concept of best subset variable selection and proposed a new model called Multi-mOdal beSt Subset modeling (MOSS). The proposed MOSS can effectively select the important sensor modalities and improve the modeling accuracy in quality-process modeling via functional norms that characterize the overall effects of individual modalities. The significance of sensor modalities can be used to determine the sensor placement strategy in smart manufacturing. Moreover, the selected modalities can better interpret the quality-process model by identifying the most correlated root cause of quality variations. The merits of the proposed model are illustrated by both simulations and a real case study in an additive manufacturing (i.e., fused deposition modeling) process. 
    more » « less