skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: MOSS—Multi-Modal Best Subset Modeling in Smart Manufacturing
Smart manufacturing, which integrates a multi-sensing system with physical manufacturing processes, has been widely adopted in the industry to support online and real-time decision making to improve manufacturing quality. A multi-sensing system for each specific manufacturing process can efficiently collect the in situ process variables from different sensor modalities to reflect the process variations in real-time. However, in practice, we usually do not have enough budget to equip too many sensors in each manufacturing process due to the cost consideration. Moreover, it is also important to better interpret the relationship between the sensing modalities and the quality variables based on the model. Therefore, it is necessary to model the quality-process relationship by selecting the most relevant sensor modalities with the specific quality measurement from the multi-modal sensing system in smart manufacturing. In this research, we adopted the concept of best subset variable selection and proposed a new model called Multi-mOdal beSt Subset modeling (MOSS). The proposed MOSS can effectively select the important sensor modalities and improve the modeling accuracy in quality-process modeling via functional norms that characterize the overall effects of individual modalities. The significance of sensor modalities can be used to determine the sensor placement strategy in smart manufacturing. Moreover, the selected modalities can better interpret the quality-process model by identifying the most correlated root cause of quality variations. The merits of the proposed model are illustrated by both simulations and a real case study in an additive manufacturing (i.e., fused deposition modeling) process.  more » « less
Award ID(s):
1916174
PAR ID:
10281315
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Sensors
Volume:
21
Issue:
1
ISSN:
1424-8220
Page Range / eLocation ID:
243
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In multistage manufacturing systems, modeling multiple quality indices based on the process sensing variables is important. However, the classic modeling technique predicts each quality variable one at a time, which fails to consider the correlation within or between stages. We propose a deep multistage multi-task learning framework to jointly predict all output sensing variables in a unified end-to-end learning framework according to the sequential system architecture in the MMS. Our numerical studies and real case study have shown that the new model has a superior performance compared to many benchmark methods as well as great interpretability through developed variable selection techniques. 
    more » « less
  2. Training and on-site assistance is critical to help workers master required skills, improve worker productivity, and guarantee the product quality. Traditional training methods lack worker-centered considerations that are particularly in need when workers are facing ever changing demands. In this study, we propose a worker-centered training & assistant system for intelligent manufacturing, which is featured with self-awareness and active-guidance. Multi-modal sensing techniques are applied to perceive each individual worker and a deep learning approach is developed to understand the worker’s behavior and intention. Moreover, an object detection algorithm is implemented to identify the parts/tools the worker is interacting with. Then the worker’s current state is inferred and used for quantifying and assessing the worker performance, from which the worker’s potential guidance demands are analyzed. Furthermore, onsite guidance with multi-modal augmented reality is provided actively and continuously during the operational process. Two case studies are used to demonstrate the feasibility and great potential of our proposed approach and system for applying to the manufacturing industry for frontline workers. 
    more » « less
  3. Urban environments pose significant challenges to pedestrian safety and mobility. This paper introduces a novel modular sensing framework for developing real-time, multimodal streetscape applications in smart cities. Prior urban sensing systems predominantly rely either on fixed data modalities or centralized data processing, resulting in limited flexibility, high latency, and superficial privacy protections. In contrast, our framework integrates diverse sensing modalities, including cameras, mobile IMU sensors, and wearables into a unified ecosystem leveraging edge-driven distributed analytics. The proposed modular architecture, supported by standardized APIs and message-driven communication, enables hyper-local sensing and scalable development of responsive pedestrian applications. A concrete application demonstrating multimodal pedestrian tracking is developed and evaluated. It is based on the cross-modal inference module, which fuses visual and mobile IMU sensor data to associate detected entities in the camera domain with their corresponding mobile device.We evaluate our framework’s performance in various urban sensing scenarios, demonstrating an online association accuracy of 75% with a latency of ≈39 milliseconds. Our results demonstrate significant potential for broader pedestrian safety and mobility scenarios in smart cities. 
    more » « less
  4. Modeling corrosion growth for complex systems such as the oil refinery system is a major challenge since the corrosion process of oil and gas pipelines are inherently stochastic and depends on many factors including exposures to environmental conditions, operating conditions, and electrochemical reactions. Moreover, the number of sensors is usually limited, and sensor data are incomplete and scattering, which hinders the capability of capturing the corrosion growth behaviors. Therefore, this paper proposes Multi-sensor Corrosion Growth Model with Latent Variables to predict the corrosion growth process in oil refinery piping. The proposed model is a combination of the hierarchical clustering algorithm and the vector autoregression (VAR) model. The clustering algorithm aims to find the hidden (i.e., latent) data clusters of the measured time series data, from which the time series from the same cluster will be included in the VAR model to predict the corrosion depth from multiple sensors. The model can capture the relationship between sensor time series data and identify latent variables. A real case study of an oil refinery system, in which in-line inspection (ILI) data were collected, was utilized to validate model. Regarding corrosion growth prediction, the paper compared the prediction accuracy of VAR model with other three forms of power law model, which is widely accepted to expect the time-dependent depth of corrosion such as power function (PF), PF with initiation time of corrosion (PFIT), and PF with initiation time of corrosion and covariates (PFCOV). The results showed that VAR model has the lowest prediction error based on the mean absolute percentage error (MAPE) evaluation for test data. Finally, the proposed model is believed to be useful for dealing with a complex system that has a variety of corrosion growth behaviors, such as the oil refinery system, as well as it can be applied in other real-time applications. 
    more » « less
  5. This study aims at sensing and understanding the worker’s activity in a human-centered intelligent manufacturing system. We propose a novel multi-modal approach for worker activity recognition by leveraging information from different sensors and in different modalities. Specifically, a smart armband and a visual camera are applied to capture Inertial Measurement Unit (IMU) signals and videos, respectively. For the IMU signals, we design two novel feature transform mechanisms, in both frequency and spatial domains, to assemble the captured IMU signals as images, which allow using convolutional neural networks to learn the most discriminative features. Along with the above two modalities, we propose two other modalities for the video data, i.e., at the video frame and video clip levels. Each of the four modalities returns a probability distribution on activity prediction. Then, these probability distributions are fused to output the worker activity classification result. A worker activity dataset is established, which at present contains 6 common activities in assembly tasks, i.e., grab a tool/part, hammer a nail, use a power-screwdriver, rest arms, turn a screwdriver, and use a wrench. The developed multi-modal approach is evaluated on this dataset and achieves recognition accuracies as high as 97% and 100% in the leave-one-out and half-half experiments, respectively. 
    more » « less