Training and on-site assistance is critical to help workers master required skills, improve worker productivity, and guarantee the product quality. Traditional training methods lack worker-centered considerations that are particularly in need when workers are facing ever changing demands. In this study, we propose a worker-centered training & assistant system for intelligent manufacturing, which is featured with self-awareness and active-guidance. Multi-modal sensing techniques are applied to perceive each individual worker and a deep learning approach is developed to understand the worker’s behavior and intention. Moreover, an object detection algorithm is implemented to identify the parts/tools the worker is interacting with. Then the worker’s current state is inferred and used for quantifying and assessing the worker performance, from which the worker’s potential guidance demands are analyzed. Furthermore, onsite guidance with multi-modal augmented reality is provided actively and continuously during the operational process. Two case studies are used to demonstrate the feasibility and great potential of our proposed approach and system for applying to the manufacturing industry for frontline workers.
MOSS—Multi-Modal Best Subset Modeling in Smart Manufacturing
Smart manufacturing, which integrates a multi-sensing system with physical manufacturing processes, has been widely adopted in the industry to support online and real-time decision making to improve manufacturing quality. A multi-sensing system for each specific manufacturing process can efficiently collect the in situ process variables from different sensor modalities to reflect the process variations in real-time. However, in practice, we usually do not have enough budget to equip too many sensors in each manufacturing process due to the cost consideration. Moreover, it is also important to better interpret the relationship between the sensing modalities and the quality variables based on the model. Therefore, it is necessary to model the quality-process relationship by selecting the most relevant sensor modalities with the specific quality measurement from the multi-modal sensing system in smart manufacturing. In this research, we adopted the concept of best subset variable selection and proposed a new model called Multi-mOdal beSt Subset modeling (MOSS). The proposed MOSS can effectively select the important sensor modalities and improve the modeling accuracy in quality-process modeling via functional norms that characterize the overall effects of individual modalities. The significance of sensor modalities can be used to determine the sensor placement strategy in smart manufacturing. more »
- Award ID(s):
- 1916174
- Publication Date:
- NSF-PAR ID:
- 10281315
- Journal Name:
- Sensors
- Volume:
- 21
- Issue:
- 1
- Page Range or eLocation-ID:
- 243
- ISSN:
- 1424-8220
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Introduction: Computed tomography perfusion (CTP) imaging requires injection of an intravenous contrast agent and increased exposure to ionizing radiation. This process can be lengthy, costly, and potentially dangerous to patients, especially in emergency settings. We propose MAGIC, a multitask, generative adversarial network-based deep learning model to synthesize an entire CTP series from only a non-contrasted CT (NCCT) input. Materials and Methods: NCCT and CTP series were retrospectively retrieved from 493 patients at UF Health with IRB approval. The data were deidentified and all images were resized to 256x256 pixels. The collected perfusion data were analyzed using the RapidAI CT Perfusion analysis software (iSchemaView, Inc. CA) to generate each CTP map. For each subject, 10 CTP slices were selected. Each slice was paired with one NCCT slice at the same location and two NCCT slices at a predefined vertical offset, resulting in 4.3K CTP images and 12.9K NCCT images used for training. The incorporation of a spatial offset into the NCCT input allows MAGIC to more accurately synthesize cerebral perfusive structures, increasing the quality of the generated images. The studies included a variety of indications, including healthy tissue, mild infarction, and severe infarction. The proposed MAGIC model incorporates a novel multitaskmore »
-
In multistage manufacturing systems, modeling multiple quality indices based on the process sensing variables is important. However, the classic modeling technique predicts each quality variable one at a time, which fails to consider the correlation within or between stages. We propose a deep multistage multi-task learning framework to jointly predict all output sensing variables in a unified end-to-end learning framework according to the sequential system architecture in the MMS. Our numerical studies and real case study have shown that the new model has a superior performance compared to many benchmark methods as well as great interpretability through developed variable selection techniques.
-
Additive Manufacturing (AM) is a crucial component of the smart manufacturing industry. In this paper, we propose an automated quality grading system for the fused deposition modeling (FDM) process as one of the major AM processes using a developed real-time deep convolutional neural network (CNN) model. The CNN model is trained offline using the images of the internal and surface defects in the layer-by-layer deposition of materials and tested online by studying the performance of detecting and grading the failure in AM process at different extruder speeds and temperatures. The model demonstrates an accuracy of 94% and specificity of 96%, as well as above 75% in measures of the F-score, the sensitivity, and the precision for classifying the quality of the AM process in five grades in real-time. The high-performance of the model could not be achieved with the values usually used for printing temperature and printing speed, only in addition with much higher values. The proposed online model adds an automated, consistent, and non-contact quality control signal to the AM process. The quality monitoring signal can also be used by the AM machine to stop the AM process and eliminate the sophisticated inspection of the printed parts for internalmore »
-
Multi-modal bio-sensing has recently been used as effective research tools in affective computing, autism, clinical disorders, and virtual reality among other areas. However, none of the existing bio-sensing systems support multi-modality in a wearable manner outside well-controlled laboratory environments with research-grade measurements. This work attempts to bridge this gap by developing a wearable multi-modal biosensing system capable of collecting, synchronizing, recording and transmitting data from multiple bio-sensors: PPG, EEG, eye-gaze headset, body motion capture, GSR, etc. while also providing task modulation features including visual-stimulus tagging. This study describes the development and integration of the various components of our system. We evaluate the developed sensors by comparing their measurements to those obtained by a standard research-grade bio-sensors. We first evaluate different sensor modalities of our headset, namely earlobe-based PPG module with motion-noise canceling for ECG during heart-beat calculation. We also compare the steady-state visually evoked potentials (SSVEP) measured by our shielded dry EEG sensors with the potentials obtained by commercially available dry EEG sensors. We also investigate the effect of head movements on the accuracy and precision of our wearable eyegaze system. Furthermore, we carry out two practical tasks to demonstrate the applications of using multiple sensor modalities for exploring previouslymore »