skip to main content


Title: Long-term memory and working memory compete and cooperate to guide attention
Multiple types of memory guide attention: Both long-term memory (LTM) and working memory (WM) effectively guide visual search. Furthermore, both types of memories can capture attention automatically, even when detrimental to performance. It is less clear, however, how LTM and WM cooperate or compete to guide attention in the same task. In a series of behavioral experiments, we show that LTM and WM reliably cooperate to guide attention: Visual search is faster when both memories cue attention to the same spatial location (relative to when only one memory can guide attention). LTM and WM competed to guide attention in more limited circumstances: Competition only occurred when these memories were in different dimensions – particularly when participants searched for a shape and held an accessory color in mind. Finally, we found no evidence for asymmetry in either cooperation or competition: There was no evidence that WM helped (or hindered) LTM-guided search more than the other way around. This lack of asymmetry was found despite differences in LTM-guided and WM-guided search overall, and differences in how two LTMs and two WMs compete or cooperate with each other to guide attention. This work suggests that, even if only one memory is currently task-relevant, WM and LTM can cooperate to guide attention; they can also compete when distracting features are salient enough. This work elucidates interactions between WM and LTM during attentional guidance, adding to the literature on costs and benefits to attention from multiple active memories.  more » « less
Award ID(s):
1844241
NSF-PAR ID:
10377496
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Attention, Perception, & Psychophysics
ISSN:
1943-3921
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The lateralized ERP N2pc component has been shown to be an effective marker of attentional object selection when elicited in a visual search task, specifically reflecting the selection of a target item among distractors. Moreover, when targets are known in advance, the visual search process is guided by representations of target features held in working memory at the time of search, thus guiding attention to objects with target-matching features. Previous studies have shown that manipulating working memory availability via concurrent tasks or within task manipulations influences visual search performance and the N2pc. Other studies have indicated that visual (non-spatial) vs. spatial working memory manipulations have differential contributions to visual search. To investigate this the current study assesses participants' visual and spatial working memory ability independent of the visual search task to determine whether such individual differences in working memory affect task performance and the N2pc. Participants ( n = 205) completed a visual search task to elicit the N2pc and separate visual working memory (VWM) and spatial working memory (SPWM) assessments. Greater SPWM, but not VWM, ability is correlated with and predicts higher visual search accuracy and greater N2pc amplitudes. Neither VWM nor SPWM was related to N2pc latency. These results provide additional support to prior behavioral and neural visual search findings that spatial WM availability, whether as an ability of the participant's processing system or based on task demands, plays an important role in efficient visual search. 
    more » « less
  2. Visual working memory (VWM) representations interact with attentional guidance, but there is controversy over whether multiple VWM items simultaneously influence attentional guidance. Extant studies relied on continuous variables like response times, which can obscure capture – especially if VWM representations cycle through interactive and non-interactive states. Previous conflicting findings regarding guidance when under high working memory (WM) load may be due to the use of noisier response time measures that mix capture and non-capture trials. Thus, we employed an oculomotor paradigm to characterize discrete attentional capture events under both high and low VWM load. Participants held one or two colors in memory, then executed a saccade to a target disk. On some trials, a distractor (sometimes VWM-matching) appeared simultaneously with the target. Eye movements were more frequently directed to a VWM-matching than a non-matching distractor for both load conditions. However, oculomotor capture by a VWM-matching distractor occurred less frequently under high compared with low load. These results suggest that attention is automatically guided toward items matching only one of two colors held in memory at a time, suggesting that items in VWM may cycle through attention-guiding and not-guiding states when more than one item is held in VWM and the task does not require that multiple items be maintained in an active, attention-guiding state. 
    more » « less
  3. Abstract

    Working memory (WM) is a capacity- and duration-limited system that forms a temporal bridge between fleeting sensory phenomena and possible actions. But how are the contents of WM used to guide behavior? A recent high-profile study reported evidence for simultaneous access to WM content and linked motor plans during WM-guided behavior, challenging serial models where task-relevant WM content is first selected and then mapped on to a task-relevant motor response. However, the task used in that study was not optimized to distinguish the selection of spatial versus nonspatial visual information stored in memory, nor to distinguish whether or how the chronometry of selecting nonspatial visual information stored in memory might differ from the selection of linked motor plans. Here, we revisited the chronometry of spatial, feature, and motor selection during WM-guided behavior using a task optimized to disentangle these processes. Concurrent EEG and eye position recordings revealed clear evidence for temporally dissociable spatial, feature, and motor selection during this task. Thus, our data reveal the existence of multiple WM selection mechanisms that belie conceptualizations of WM-guided behavior based on purely serial or parallel visuomotor processing.

     
    more » « less
  4. At any given moment, humans are bombarded with a constant stream of new information. But the brain can take in only a fraction of that information at once. So how does the brain decide what to pay attention to and what to ignore? Many laboratory studies of attention avoid this issue by simply telling participants what to attend to. But in daily life, people rarely receive instructions like that. Instead people must often rely on past experiences to guide their attention. When cycling close to home, for example, a person knows to watch out for the blind junction at the top of the hill and for the large pothole just around the corner. Günseli and Aly set out to bridge the gap between laboratory studies of attention and real-world experience by asking healthy volunteers to perform two versions of a task while lying inside a brain scanner. The task involved looking at pictures of rooms with different shapes. Each room also contained a different painting. In one version of the task, the volunteers were told to pay attention to either the paintings or to the room shapes. In the other version, the volunteers had to use previously memorized cues to work out for themselves whether they should focus on the paintings or on the shapes. The brain scans showed that two areas of the brain with roles in memory – the hippocampus and the prefrontal cortex – were involved in the task. Notably, both areas increased their activity when the volunteers used memory to guide their attention, compared to when they received instructions telling them what to focus on. Moreover, patterns of activity within the hippocampus and prefrontal cortex contained information about what the participants were about to focus on next – even before volunteers saw the particular picture that they were supposed to pay attention to. In the hippocampus, this was particularly the case when the volunteers based their decisions on memory. These results reveal a key way in which humans leverage memories of past experiences to help optimize future behavior. Understanding this process could shed light on why memory impairments make it harder for people to adjust their behavior to achieve specific goals. 
    more » « less
  5. Long-term memory (LTM) is believed to be stored in the brain as changes in synaptic connections. Here, we show that LTM storage and synaptic change can be dissociated. Cocultures of Aplysia sensory and motor neurons were trained with spaced pulses of serotonin, which induces long-term facilitation. Serotonin (5HT) triggered growth of new presynaptic varicosities, a synaptic mechanism of long-term sensitization. Following 5HT training, two antimnemonic treatments—reconsolidation blockade and inhibition of PKM—caused the number of presynaptic varicosities to revert to the original, pretraining value. Surprisingly, the final synaptic structure was not achieved by targeted retraction of the 5HT-induced varicosities but, rather, by an apparently arbitrary retraction of both 5HT-induced and original synapses. In addition, we find evidence that the LTM for sensitization persists covertly after its apparent elimination by the same antimnemonic treatments that erase learning-related synaptic growth. These results challenge the idea that stable synapses store long-term memories.

     
    more » « less