skip to main content


Search for: All records

Award ID contains: 1844241

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Some people exhibit impressive memory for a wide array of semantic knowledge. What makes these trivia experts better able to learn and retain novel facts? We hypothesized that new semantic knowledge may be more strongly linked to its episodic context in trivia experts. We designed a novel online task in which 132 participants varying in trivia expertise encoded “exhibits” of naturalistic facts with related photos in one of two “museums.” Afterward, participants were tested on cued recall of facts and recognition of the associated photo and museum. Greater trivia expertise predicted higher cued recall for novel facts. Critically, trivia experts but not non-experts showed superior fact recall when they remembered both features (photo and museum) of the encoding context. These findings illustrate enhanced links between episodic memory and new semantic learning in trivia experts, and show the value of studying trivia experts as a special population that can shed light on the mechanisms of memory. 
    more » « less
    Free, publicly-accessible full text available February 12, 2025
  2. Everyday experience requires processing external signals from the world around us and internal information retrieved from memory. To do both, the brain must fluctuate between states that are optimized for external versus internal attention. Here, we focus on the hippocampus as a region that may serve at the interface between these forms of attention and ask how it switches between prioritizing sensory signals from the external world versus internal signals related to memories and thoughts. Pharmacological, computational, and animal studies have identified input from the cholinergic basal forebrain as important for biasing the hippocampus toward processing external information, whereas complementary research suggests the dorsal attention network (DAN) may aid in allocating attentional resources toward accessing internal information. We therefore tested the hypothesis that the basal forebrain and DAN drive the hippocampus toward external and internal attention, respectively. We used data from 29 human participants (17 female) who completed two attention tasks during fMRI. One task (memory-guided) required proportionally more internal attention, and proportionally less external attention, than the other (explicitly instructed). We discovered that background functional connectivity between the basal forebrain and hippocampus was stronger during the explicitly instructed versus memory-guided task. In contrast, DAN–hippocampus background connectivity was stronger during the memory-guided versus explicitly instructed task. Finally, the strength of DAN–hippocampus background connectivity was correlated with performance on the memory-guided but not explicitly instructed task. Together, these results provide evidence that the basal forebrain and DAN may modulate the hippocampus to switch between external and internal attention.

    SIGNIFICANCE STATEMENTHow does the brain balance the need to pay attention to internal thoughts and external sensations? We focused on the human hippocampus, a region that may serve at the interface between internal and external attention, and asked how its functional connectivity varies based on attentional states. The hippocampus was more strongly coupled with the cholinergic basal forebrain when attentional states were guided by the external world rather than retrieved memories. This pattern flipped for functional connectivity between the hippocampus and dorsal attention network, which was higher for attention tasks that were guided by memory rather than external cues. Together, these findings show that distinct networks in the brain may modulate the hippocampus to switch between external and internal attention.

     
    more » « less
  3. Goal-directed behavior requires adaptive systems that respond to environmental demands. In the absence of threat (or presence of reward), individuals can explore many behavioral trajectories, effectively interrogating the environment across multiple dimensions. This leads to flexible, relational memory encoding and retrieval. In the presence of danger, motivation shifts to an imperative state characterized by a narrow focus of attention on threatening information. This impairs flexible, relational memory. We test how these motivational shifts affect behavioral flexibility in an ecologically valid setting. Participants learned the structure of maze-like environments and navigated to the location of objects in both safe and threatening contexts. The latter contained a predator that could ‘capture’ participants, leading to electric shock. After learning, the path to some objects was unpredictably blocked, forcing a detour for which one route was significantly shorter. We predicted that threat would push participants toward an imperative state, leading to less efficient and less flexible navigation. Threat caused participants to take longer paths to goal objects and less efficient detours when obstacles were encountered. Threat-related impairments in detour navigation persisted after controlling for non-detour navigation performance, and non-detour navigation was not a reliable predictor of detour navigation. This suggests a specific impairment in flexible navigation during detours, an impairment unlikely to be explained by more general processes like predator avoidance or divided attention that may be present during non-detour navigation. These results provide ecologically valid evidence that dynamic, observable threats reduce flexible use of cognitive maps to guide behavior. 
    more » « less
    Free, publicly-accessible full text available August 19, 2024
  4. Free, publicly-accessible full text available June 1, 2024
  5. Multiple types of memory guide attention: Both long-term memory (LTM) and working memory (WM) effectively guide visual search. Furthermore, both types of memories can capture attention automatically, even when detrimental to performance. It is less clear, however, how LTM and WM cooperate or compete to guide attention in the same task. In a series of behavioral experiments, we show that LTM and WM reliably cooperate to guide attention: Visual search is faster when both memories cue attention to the same spatial location (relative to when only one memory can guide attention). LTM and WM competed to guide attention in more limited circumstances: Competition only occurred when these memories were in different dimensions – particularly when participants searched for a shape and held an accessory color in mind. Finally, we found no evidence for asymmetry in either cooperation or competition: There was no evidence that WM helped (or hindered) LTM-guided search more than the other way around. This lack of asymmetry was found despite differences in LTM-guided and WM-guided search overall, and differences in how two LTMs and two WMs compete or cooperate with each other to guide attention. This work suggests that, even if only one memory is currently task-relevant, WM and LTM can cooperate to guide attention; they can also compete when distracting features are salient enough. This work elucidates interactions between WM and LTM during attentional guidance, adding to the literature on costs and benefits to attention from multiple active memories. 
    more » « less
  6. null (Ed.)
  7. The medial temporal lobe (MTL) is traditionally considered to be a system that is specialized for long-term memory. Recent work has challenged this notion by demonstrating that this region can contribute to many domains of cognition beyond long-term memory, including perception and attention. One potential reason why the MTL (and hippocampus specifically) contributes broadly to cognition is that it contains relational representations—representations of multidimensional features of experience and their unique relationship to one another—that are useful in many different cognitive domains. Here, we explore the hypothesis that the hippocampus/MTL plays a critical role in attention and perception via relational representations. We compared human participants with MTL damage to healthy age- and education-matched individuals on attention tasks that varied in relational processing demands. On each trial, participants viewed two images (rooms with paintings). On “similar room” trials, they judged whether the rooms had the same spatial layout from a different perspective. On “similar art” trials, they judged whether the paintings could have been painted by the same artist. On “identical” trials, participants simply had to detect identical paintings or rooms. MTL lesion patients were significantly and selectively impaired on the similar room task. This work provides further evidence that the hippocampus/MTL plays a ubiquitous role in cognition by virtue of its relational and spatial representations and highlights its important contributions to rapid perceptual processes that benefit from attention. 
    more » « less
  8. At any given moment, humans are bombarded with a constant stream of new information. But the brain can take in only a fraction of that information at once. So how does the brain decide what to pay attention to and what to ignore? Many laboratory studies of attention avoid this issue by simply telling participants what to attend to. But in daily life, people rarely receive instructions like that. Instead people must often rely on past experiences to guide their attention. When cycling close to home, for example, a person knows to watch out for the blind junction at the top of the hill and for the large pothole just around the corner. Günseli and Aly set out to bridge the gap between laboratory studies of attention and real-world experience by asking healthy volunteers to perform two versions of a task while lying inside a brain scanner. The task involved looking at pictures of rooms with different shapes. Each room also contained a different painting. In one version of the task, the volunteers were told to pay attention to either the paintings or to the room shapes. In the other version, the volunteers had to use previously memorized cues to work out for themselves whether they should focus on the paintings or on the shapes. The brain scans showed that two areas of the brain with roles in memory – the hippocampus and the prefrontal cortex – were involved in the task. Notably, both areas increased their activity when the volunteers used memory to guide their attention, compared to when they received instructions telling them what to focus on. Moreover, patterns of activity within the hippocampus and prefrontal cortex contained information about what the participants were about to focus on next – even before volunteers saw the particular picture that they were supposed to pay attention to. In the hippocampus, this was particularly the case when the volunteers based their decisions on memory. These results reveal a key way in which humans leverage memories of past experiences to help optimize future behavior. Understanding this process could shed light on why memory impairments make it harder for people to adjust their behavior to achieve specific goals. 
    more » « less