skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: Temporally Dissociable Mechanisms of Spatial, Feature, and Motor Selection during Working Memory–guided Behavior
Abstract

Working memory (WM) is a capacity- and duration-limited system that forms a temporal bridge between fleeting sensory phenomena and possible actions. But how are the contents of WM used to guide behavior? A recent high-profile study reported evidence for simultaneous access to WM content and linked motor plans during WM-guided behavior, challenging serial models where task-relevant WM content is first selected and then mapped on to a task-relevant motor response. However, the task used in that study was not optimized to distinguish the selection of spatial versus nonspatial visual information stored in memory, nor to distinguish whether or how the chronometry of selecting nonspatial visual information stored in memory might differ from the selection of linked motor plans. Here, we revisited the chronometry of spatial, feature, and motor selection during WM-guided behavior using a task optimized to disentangle these processes. Concurrent EEG and eye position recordings revealed clear evidence for temporally dissociable spatial, feature, and motor selection during this task. Thus, our data reveal the existence of multiple WM selection mechanisms that belie conceptualizations of WM-guided behavior based on purely serial or parallel visuomotor processing.

 
more » « less
Award ID(s):
2050833
NSF-PAR ID:
10488673
Author(s) / Creator(s):
;
Publisher / Repository:
Journal of Cognitive Neuroscience
Date Published:
Journal Name:
Journal of Cognitive Neuroscience
Volume:
35
Issue:
12
ISSN:
0898-929X
Page Range / eLocation ID:
2014 to 2027
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Multiple types of memory guide attention: Both long-term memory (LTM) and working memory (WM) effectively guide visual search. Furthermore, both types of memories can capture attention automatically, even when detrimental to performance. It is less clear, however, how LTM and WM cooperate or compete to guide attention in the same task. In a series of behavioral experiments, we show that LTM and WM reliably cooperate to guide attention: Visual search is faster when both memories cue attention to the same spatial location (relative to when only one memory can guide attention). LTM and WM competed to guide attention in more limited circumstances: Competition only occurred when these memories were in different dimensions – particularly when participants searched for a shape and held an accessory color in mind. Finally, we found no evidence for asymmetry in either cooperation or competition: There was no evidence that WM helped (or hindered) LTM-guided search more than the other way around. This lack of asymmetry was found despite differences in LTM-guided and WM-guided search overall, and differences in how two LTMs and two WMs compete or cooperate with each other to guide attention. This work suggests that, even if only one memory is currently task-relevant, WM and LTM can cooperate to guide attention; they can also compete when distracting features are salient enough. This work elucidates interactions between WM and LTM during attentional guidance, adding to the literature on costs and benefits to attention from multiple active memories. 
    more » « less
  2. The lateralized ERP N2pc component has been shown to be an effective marker of attentional object selection when elicited in a visual search task, specifically reflecting the selection of a target item among distractors. Moreover, when targets are known in advance, the visual search process is guided by representations of target features held in working memory at the time of search, thus guiding attention to objects with target-matching features. Previous studies have shown that manipulating working memory availability via concurrent tasks or within task manipulations influences visual search performance and the N2pc. Other studies have indicated that visual (non-spatial) vs. spatial working memory manipulations have differential contributions to visual search. To investigate this the current study assesses participants' visual and spatial working memory ability independent of the visual search task to determine whether such individual differences in working memory affect task performance and the N2pc. Participants ( n = 205) completed a visual search task to elicit the N2pc and separate visual working memory (VWM) and spatial working memory (SPWM) assessments. Greater SPWM, but not VWM, ability is correlated with and predicts higher visual search accuracy and greater N2pc amplitudes. Neither VWM nor SPWM was related to N2pc latency. These results provide additional support to prior behavioral and neural visual search findings that spatial WM availability, whether as an ability of the participant's processing system or based on task demands, plays an important role in efficient visual search. 
    more » « less
  3. Abstract

    During visually guided behavior, the prefrontal cortex plays a pivotal role in mapping sensory inputs onto appropriate motor plans. When the sensory input is ambiguous, this involves deliberation. It is not known whether the deliberation is implemented as a competition between possible stimulus interpretations or between possible motor plans. Here we study neural population activity in the prefrontal cortex of macaque monkeys trained to flexibly report perceptual judgments of ambiguous visual stimuli. We find that the population activity initially represents the formation of a perceptual choice before transitioning into the representation of the motor plan. Stimulus strength and prior expectations both bear on the formation of the perceptual choice, but not on the formation of the action plan. These results suggest that prefrontal circuits involved in action selection are also used for the deliberation of abstract propositions divorced from a specific motor plan, thus providing a crucial mechanism for abstract reasoning.

     
    more » « less
  4. Abstract

    Objective.Sensorimotor decisions require the brain to process external information and combine it with relevant knowledge prior to actions. In this study, we explore the neural predictors of motor actions in a novel, realistic driving task designed to study decisions while driving.Approach.Through a spatiospectral assessment of functional connectivity during the premotor period, we identified the organization of visual cortex regions of interest into a distinct scene processing network. Additionally, we identified a motor action selection network characterized by coherence between the anterior cingulate cortex (ACC) and dorsolateral prefrontal cortex (DLPFC).Main results.We show that steering behavior can be predicted from oscillatory power in the visual cortex, DLPFC, and ACC. Power during the premotor periods (specific to the theta and beta bands) correlates with pupil-linked arousal and saccade duration.Significance.We interpret our findings in the context of network-level correlations with saccade-related behavior and show that the DLPFC is a key node in arousal circuitry and in sensorimotor decisions.

     
    more » « less
  5. During navigation, animals often use recognition of familiar environmental contexts to guide motor action selection. The retrosplenial cortex (RSC) receives inputs from both visual cortex and subcortical regions required for spatial memory and projects to motor planning regions. However, it is not known whether RSC is important for associating familiar environmental contexts with specific motor actions. We test this possibility by developing a task in which motor trajectories are chosen based on the context. We find that mice exhibit differential predecision activity in RSC and that optogenetic suppression of RSC activity impairs task performance. Individual RSC neurons encode a range of task variables, often multiplexed with distinct temporal profiles. However, the responses are spatiotemporally organized, with task variables represented along a posterior-to-anterior gradient along RSC during the behavioral performance, consistent with histological characterization. These results reveal an anatomically organized retrosplenial cortical circuit for associating environmental contexts with appropriate motor outputs. 
    more » « less