Abstract Relativistic magnetic turbulence has been proposed as a process for producing nonthermal particles in high-energy astrophysics. The particle energization may be contributed by both magnetic reconnection and turbulent fluctuations, but their interplay is poorly understood. It has been suggested that during magnetic reconnection the parallel electric field dominates the particle acceleration up to the lower bound of the power-law particle spectrum, but recent studies show that electric fields perpendicular to the magnetic field can play an important, if not dominant role. In this study, we carry out two-dimensional fully kinetic particle-in-cell simulations of magnetically dominated decaying turbulence in a relativistic pair plasma. For a fixed magnetization parameterσ0 = 20, we find that the injection energyεinjconverges with increasing domain size toεinj ≃ 10mec2. In contrast, the power-law index, the cut-off energy, and the power-law extent increase steadily with domain size. We trace a large number of particles and evaluate the contributions of the work done by the parallel (W∥) and perpendicular (W⊥) electric fields during both the injection phase and the postinjection phase. We find that during the injection phase, theW⊥contribution increases with domain size, suggesting that it may eventually dominate injection for a sufficiently large domain. In contrast, on average, both components contribute equally during the postinjection phase, insensitive to the domain size. For high energy (ε ≫ εinj) particles,W⊥dominates the subsequent energization. These findings may improve our understanding of nonthermal particles and their emissions in astrophysical plasmas.
more »
« less
Local equilibrium of particle density in planar Lorentz processes
Abstract Particles are injected into a large planar domain through the boundary and perform a random or sufficiently chaotic deterministic motion inside the domain. Our main example is the Sinai billiard, which periodically extended to our large planar domain, is referred to as the Lorentz process. Assuming that the particles move independently from one another and the boundary is also absorbing, we prove the emergence of local equilibrium of the particle density in the diffusive scaling limit in two scenarios. One scenario is an arbitrary domain with piece-wise smooth boundary and a carefully chosen injection rule; the other scenario is a rectangular domain and a much more general injection mechanism. We study the latter scenario in an abstract framework that includes Lorentz processes and random walks and hopefully allows for more applications in the future.
more »
« less
- Award ID(s):
- 1952876
- PAR ID:
- 10377730
- Date Published:
- Journal Name:
- Nonlinearity
- Volume:
- 34
- Issue:
- 9
- ISSN:
- 0951-7715
- Page Range / eLocation ID:
- 6210 to 6247
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Experiments were conducted to investigate the use of coherent vortical structures for boundary layer re-energization in a laminar boundary layer. The structures were generated artificially in the form of a hairpin train using a synthetic jet actuator to ensure repeatability for assessing the control. The structures act as a proxy for naturally occurring large-scale motions found in turbulent boundary layers. The hairpin train was controlled by both a static pin and a jet-assisted surface-mounted actuator (JASMA), and the results were captured using particle image velocimetry (PIV). Planar PIV was used to run a parameter study on several actuator strengths, angles, and heights along the domain mid-plane. Stereoscopic PIV measurements conducted downstream were aggregated into a volume of data for further analysis of the control of one particular hairpin train generation case. It was found that both the passive control pin and the active control JASMA contribute turbulent kinetic energy and downwash downstream to increase mixing and momentum injection into the boundary layer.more » « less
-
Abstract. It is known that aqueous haze particles can be activated into cloud droplets in a supersaturated environment. However, haze–cloud interactions have not been fully explored, partly because haze particles are not represented in most cloud-resolving models. Here, we conduct a series of large-eddy simulations (LESs) of a cloud in a convection chamber using a haze-capable Eulerian-based bin microphysics scheme to explore haze–cloud interactions over a wide range of aerosol injection rates. Results show that the cloud is in a slow microphysics regime at low aerosol injection rates, where the cloud responds slowly to an environmental change and droplet deactivation is negligible. The cloud is in a fast microphysics regime at moderate aerosol injection rates, where the cloud responds quickly to an environmental change and haze–cloud interactions are important. More interestingly, two more microphysics regimes are observed at high aerosol injection rates due to haze–cloud interactions. Cloud oscillation is driven by the oscillation of the mean supersaturation around the critical supersaturation of aerosol due to haze–cloud interactions. Cloud collapse happens under weaker forcing of supersaturation where the chamber transfers cloud droplets to haze particles efficiently, leading to a significant decrease (collapse) in cloud droplet number concentration. One special case of cloud collapse is the haze-only regime. It occurs at extremely high aerosol injection rates, where droplet activation is inhibited, and the sedimentation of haze particles is balanced by the aerosol injection rate. Our results suggest that haze particles and their interactions with cloud droplets should be considered, especially in polluted conditions.more » « less
-
Abstract Magnetic reconnection is invoked as one of the primary mechanisms to produce energetic particles. We employ large-scale 3D particle-in-cell simulations of reconnection in magnetically dominated ( σ = 10) pair plasmas to study the energization physics of high-energy particles. We identify an acceleration mechanism that only operates in 3D. For weak guide fields, 3D plasmoids/flux ropes extend along the z -direction of the electric current for a length comparable to their cross-sectional radius. Unlike in 2D simulations, where particles are buried in plasmoids, in 3D we find that a fraction of particles with γ ≳ 3 σ can escape from plasmoids by moving along z , and so they can experience the large-scale fields in the upstream region. These “free” particles preferentially move in z along Speiser-like orbits sampling both sides of the layer and are accelerated linearly in time—their Lorentz factor scales as γ ∝ t , in contrast to γ ∝ t in 2D. The energy gain rate approaches ∼ eE rec c , where E rec ≃ 0.1 B 0 is the reconnection electric field and B 0 the upstream magnetic field. The spectrum of free particles is hard, dN free / d γ ∝ γ − 1.5 , contains ∼20% of the dissipated magnetic energy independently of domain size, and extends up to a cutoff energy scaling linearly with box size. Our results demonstrate that relativistic reconnection in GRB and AGN jets may be a promising mechanism for generating ultra-high-energy cosmic rays.more » « less
-
Abstract Magnetic reconnection in the relativistic regime has been proposed as an important process for the efficient production of nonthermal particles and high-energy emission. Using fully kinetic particle-in-cell simulations, we investigate how the guide-field strength and domain size affect the characteristic spectral features and acceleration processes. We study two stages of acceleration: energization up until the injection energyγinjand further acceleration that generates a power-law spectrum. Stronger guide fields increase the power-law index andγinj, which suppresses acceleration efficiency. These quantities seemingly converge with increasing domain size, suggesting that our findings can be extended to large-scale systems. We find that three distinct mechanisms contribute to acceleration during injection: particle streaming along the parallel electric field, Fermi reflection, and the pickup process. The Fermi and pickup processes, related to the electric field perpendicular to the magnetic field, govern the injection for weak guide fields and larger domains. Meanwhile, parallel electric fields are important for injection in the strong guide-field regime. In the post-injection stage, we find that perpendicular electric fields dominate particle acceleration in the weak guide-field regime, whereas parallel electric fields control acceleration for strong guide fields. These findings will help explain the nonthermal acceleration and emission in high-energy astrophysics, including black hole jets and pulsar wind nebulae.more » « less
An official website of the United States government

