skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Global Dynamics and Implications of an HBV Model with Proliferating Infected Hepatocytes
Chronic hepatitis B (HBV) infection is a major cause of human suffering, and a number of mathematical models have examined the within-host dynamics of the disease. Most previous models assumed that infected hepatocytes do not proliferate; however, the effect of HBV infection on hepatocyte proliferation is controversial, with conflicting data showing both induction and inhibition of proliferation. With a family of ordinary differential equation (ODE) models, we explored the dynamical impact of proliferation among HBV-infected hepatocytes. Here, we show that infected hepatocyte proliferation in this class of models generates a threshold that divides the dynamics into two categories. Sufficiently compromised proliferation in infected cells produces complex dynamics characterized by oscillating viral loads, whereas higher proliferation generates straightforward dynamics that always results in chronic infection, sometimes with liver failure. A global stability result of the liver failure state was included as it is unique to this class of models. Finally, the model analysis motivated a testable biological hypothesis: Healthy hepatocytes are present in chronic HBV infection if and only if the proliferation of infected hepatocytes is severely impaired.  more » « less
Award ID(s):
1930728
PAR ID:
10377809
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Applied Sciences
Volume:
11
Issue:
17
ISSN:
2076-3417
Page Range / eLocation ID:
8176
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract The mechanism of how chronic hepatitis C virus (HCV) infection leads to such a high rate of hepatocellular carcinoma (HCC) is unknown. We found that the PERK axis of endoplasmic reticulum (ER) stress elicited prominent nuclear translocation of Nrf2 in 100% of HCV infected hepatocytes. The sustained nuclear translocation of Nrf2 in chronically infected culture induces Mdm2-mediated retinoblastoma protein (Rb) degradation. Silencing PERK and Nrf2 restored Mdm2-mediated Rb degradation, suggesting that sustained activation of PERK/Nrf2 axis creates oncogenic stress in chronically infected HCV culture model. The activation of Nrf2 and its nuclear translocation were prevented by ER-stress and PERK inhibitors, suggesting that PERK axis is involved in the sustained activation of Nrf2 signaling during chronic HCV infection. Furthermore, we show that HCV clearance induced by interferon-α based antiviral normalized the ER-stress response and prevented nuclear translocation of Nrf2, whereas HCV clearance by DAAs combination does neither. In conclusion, we report here a novel mechanism for how sustained activation of PERK axis of ER-stress during chronic HCV infection activates oncogenic Nrf2 signaling that promotes hepatocyte survival and oncogenesis by inducing Mdm2-mediated Rb degradation. 
    more » « less
  2. Abstract Analyzing the impact of the adaptive immune response during acute hepatitis B virus (HBV) infection is essential for understanding disease progression and control. Here we developed mathematical models of HBV infection which either lack terms for adaptive immune responses, or assume adaptive immune responses in the form of cytolytic immune killing, non-cytolytic immune cure, or non-cytolytic-mediated block of viral production. We validated the model that does not include immune responses against temporal serum hepatitis B DNA (sHBV) and temporal serum hepatitis B surface-antigen (HBsAg) experimental data from mice engrafted with human hepatocytes (HEP). Moreover, we validated the immune models against sHBV and HBsAg experimental data from mice engrafted with HEP and human immune system (HEP/HIS). As expected, the model that does not include adaptive immune responses matches the observed high sHBV and HBsAg concentrations in all HEP mice. By contrast, while all immune response models predict reduction in sHBV and HBsAg concentrations in HEP/HIS mice, the Akaike Information Criterion cannot discriminate between non-cytolytic cure (resulting in a class of cells refractory to reinfection) and antiviral block functions (of up to$$99\%$$ 99 % viral production 1–3 weeks following peak viral load). We can, however, reject cytolytic killing, as it can only match the sHBV and HBsAg data when we predict unrealistic levels of hepatocyte loss. 
    more » « less
  3. Abstract Bone marrow derived mesenchymal stem cells (BM‐MSC) is a promising alternative cell source to primary hepatocytes because of their ability to differentiate into hepatocyte‐like cells. However, their inability to differentiate efficiently and potential to turn into myofibroblasts restrict their applications. This study developed a plate coating from the liver extracellular matrix (ECM) and investigated its ability in facilitating the BM‐MSCs proliferation, hepatic differentiation, and hepatocyte‐specific functions duringin vitroculture. After 28‐day culture, BM‐MSCs on the ECM coating showed hepatocyte‐like morphology, and certain cells took up low‐density lipoprotein. Synthesis of albumin, urea, and anti‐alpha‐fetoprotein, as well as expression of certain hepatic markers, in cells cultured on ECM were higher than cells cultured on non‐coated and Matrigel‐coated plates. mRNA levels of CYP3A4, albumin, CK18, and CYP7A1 in cells on ECM coating were significantly higher than cells cultured on the non‐coating environment. In conclusion, viability and hepatogenic differentiation of BM‐MSCs cultured on both Matrigel and ECM coating were significantly enhanced compared with those cultured on non‐coated plates. Moreover, the liver ECM coating induced additional metabolic functions relative to the Matrigel coating. The liver ECM hydrogel preserves the natural composition, promotes simple gelling, induces efficient stem cell hepatogenic differentiation, and may have uses as an injectable intermedium for hepatocytes. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 829–838, 2018. 
    more » « less
  4. Infection with hepatitis B virus (HBV) is a main risk factor for hepatocellular carcinoma (HCC). Extracellular vesicles, such as exosomes, play an important role in tumor development and metastasis, including regulation of HBV-related HCC. In this study, we have characterized exosome microRNA and proteins released in vitro from hepatitis B virus (HBV)-related HCC cell lines SNU-423 and SNU-182 and immortalized normal hepatocyte cell lines (THLE2 and THLE3) using microRNA sequencing and mass spectrometry. Bioinformatics, including functional enrichment and network analysis, combined with survival analysis using data related to HCC in The Cancer Genome Atlas (TCGA) database, were applied to examine the prognostic significance of the results. More than 40 microRNAs and 200 proteins were significantly dysregulated (p < 0.05) in the exosomes released from HCC cells in comparison with the normal liver cells. The functional analysis of the differentially expressed exosomal miRNAs (i.e., mir-483, mir-133a, mir-34a, mir-155, mir-183, mir-182), their predicted targets, and exosomal differentially expressed proteins (i.e., POSTN, STAM, EXOC8, SNX9, COL1A2, IDH1, FN1) showed correlation with pathways associated with HBV, virus activity and invasion, exosome formation and adhesion, and exogenous protein binding. The results from this study may help in our understanding of the role of HBV infection in the development of HCC and in the development of new targets for treatment or non-invasive predictive biomarkers of HCC. 
    more » « less
  5. Abstract Decellularization of discarded whole livers and their recellularization with patient‐specific induced pluripotent stem cells (iPSCs) to develop a functional organ is a promising approach to increasing the donor pool. The effect of extracellular matrix (ECM) of marginal livers on iPSC‐hepatocyte differentiation and function has not been shown. To test the effect of donor liver ECM age and steatosis, young and old, as well as no, low, and high steatosis livers, are decellularized. All livers are decellularized successfully. High steatosis livers have fat remaining on the ECM after decellularization. Old donor liver ECM induces lower marker expression in early differentiation stages, compared to young liver ECM, while this difference is closed at later stages and do not affect iPSC‐hepatocyte function significantly. High steatosis levels of liver ECM lead to higher albumin mRNA expression and secretion while at later stages of differentiation expression of major cytochrome (CYP) 450 enzymes is highest in low steatosis liver ECM. Both primary human hepatocytes and iPSC‐hepatocytes show an increase in fat metabolism marker expression with increasing steatosis levels most likely induced by excess fat remaining on the ECM. Overall, removal of excess fat from liver ECM may be needed for inducing proper hepatic function after recellularization. 
    more » « less