skip to main content

Title: RESOLVING TIME AMONG NON-STRATIFIED SHORT-DURATION CONTEXTS ON A RADIOCARBON PLATEAU: POSSIBILITIES AND CHALLENGES FROM THE AD 1480–1630 EXAMPLE AND NORTHEASTERN NORTH AMERICA
ABSTRACT Reversals and plateaus in the radiocarbon ( 14 C) calibration curve lead to similar 14 C ages applying to a wide range of calendar dates, creating imprecision, ambiguity, and challenges for archaeological dating. Even with Bayesian chronological modeling, such periods remain a problem when no known order—e.g., a stratigraphic sequence—exists, and especially if site durations are relatively short. Using the reversal/plateau AD 1480–1630 and the archaeology of northeastern North America as our example, we consider possible strategies to improve chronological resolution across such reversal/plateau periods in the absence of stratigraphic sequences, including uses of wood-charcoal TPQs from even very short wiggle-matches, and site phase duration constraints based on ethnohistoric and archaeological evidence.
Authors:
; ; ;
Award ID(s):
1727802
Publication Date:
NSF-PAR ID:
10377903
Journal Name:
Radiocarbon
Volume:
62
Issue:
6
Page Range or eLocation-ID:
1785 to 1807
ISSN:
0033-8222
Sponsoring Org:
National Science Foundation
More Like this
  1. Reversals and plateaus in the radiocarbon (14C) calibration curve lead to similar 14C ages applying to a wide range of calendar dates, creating imprecision, ambiguity, and challenges for archaeological dating. Even with Bayesian chronological modeling, such periods remain a problem when no known order—e.g., a stratigraphic sequence—exists, and especially if site durations are relatively short. Using the reversal/plateau AD 1480–1630 and the archaeology of northeastern North America as our example, we consider possible strategies to improve chronological resolution across such reversal/plateau periods in the absence of stratigraphic sequences, including uses of wood-charcoal TPQs from even very short wiggle-matches, and site phase duration constraints based on ethnohistoric and archaeological evidence.
  2. ABSTRACT Considered in isolation, the radiocarbon ( 14 C) dates on short-lived plant remains from the Jean-Baptiste Lainé (formerly Mantle) site, Ontario, yield an ambiguous result: more or less similar probability around AD 1500 or alternatively around AD 1600. This village site, likely of no more than ca. 20–30 years total duration, illustrates the challenges of high-resolution dating across periods with a reversal/plateau in the 14 C calibration curve. Another problem we identify is the tendency for dating probability for short-duration sites to sometimes be overly compressed as dating intensity increases under analysis with OxCal, and for probability to shift away from the real age range especially during reversal/plateau episodes. To address both issues additional constraints are necessary. While a tree-ring sequenced 14 C “wiggle-match” is the best option where available, we investigate how, in the absence of such an option, use of the in-built age in wood-charcoal samples can be used to distinguish the likely correct date range. This approach can resolve ambiguities in dating, e.g., for shorter-duration Late Woodland village sites in northeastern North America, but also other short-duration cases corresponding with reversal/plateau episodes on the 14 C calibration curve. We place the Jean-Baptiste Lainé site most likelymore »in a range between ca. AD 1595–1626 (95.4% probability).« less
  3. Characterizing the degree of disturbance in archaeological deposits is critically important for archaeologists assessing foraging strategies, environmental conditions, or behavior patterns of ancient human groups. Qualitative techniques (e.g. micromorphology analysis) have previously been applied to assess the degree of disturbance (age-mixing) in archaeological sites; however, quantitative dating of material in the sites provides a more robust assessment of potential age-mixing. Unfortunately, because of budget constraints, archaeologists are frequently forced to rely on few quantitative age dates for an assemblage, thus obfuscating the signal of age-mixing of the deposit. The development of an affordable and rapid carbonate-target accelerator mass spectrometry (AMS) radiocarbon ( 14 C) dating method provides a cost-effective way to retrieve more quantitative dates from carbonate material in archaeological assemblages to assess the degree of age-mixing in the deposit. This study tests this new technique and dates numerous harvested marine limpet shells from archaeological sites in the Canary Islands to determine whether there is multidecadal to multicentennial age-mixing. A total of 58 shells retrieved from six sites and three islands yielded uncalibrated radiocarbon ages ranging from 2265 ± 40 to 765 ± 35 BP, coinciding with the time of prehistoric human occupation in these islands. While most shells frommore »the same stratum showed statistically equivalent ages, in some cases we detected age ranges that exceeded the imprecisions from analytical errors. This investigation is one of the first to quantitatively illustrate that shells retrieved from depth intervals without evident stratigraphic disturbance do not always contain contemporaneous remains and, therefore, dating each specimen is valuable for developing further paleoclimatic and paleoanthropological inferences. This study presents the first report of carbonate-target 14 C ages from archaeological shell middens, and suggests that this novel radiocarbon methodology can be applied to these sites, thus allowing the generation of a more comprehensive chronology.« less
  4. The 74 ka Youngest Toba Tuff (YTT) was discovered as cryptotephra in South African archaeological sites at Pinnacle Point (PP) 5-6N, Vleesbaai [1] and Klasies River on the Indian Ocean, and the Diepkloof Rock Shelter on the Atlantic coast nearly 750 km west of PP. The YTT eruption distributed tephra across eastern and southern Africa and provides a widespread isochron useful for dating archaeological deposits, testing age models, and precisely determining the timing of changes in human behavior. At PP, we demonstrated that the MIS 4-5 transition began just before the YTT eruption. Humans thrived both through the YTT event and the changing climate, and important changes in technology occurred just after the Toba eruption [1]. Controversy related to trapped charge age models at the Diepkloof rock shelter [2,3] were resolved by identifying YTT at a location in the stratigraphic section that confirmed the Jacobs et al. [2] model for the site, confirming that technological changes similar to those observed at PP occurred synchronously to those at Diepkloof, not substantially before as suggested by a prior published age model [3]. Processing samples with very low abundance cryptotephra, such as that found in South Africa, is a challenge and requires revisionmore »of standard laboratory techniques. Samples with high organic or clay content benefit by being treated with 10% HCl and 3% hydrogen peroxide (H2O2). This step does not degrade shard integrity or affect chemistry and is useful in separating shards from clay and organic particles allowing better recovery in heavy liquids. We also modified the heavy liquid density range from 1.95 - 2.55 to 2.2 - 2.5 g/cm3 to more effectively remove quartz and feldspar as well as biogenic silica. This density range captures shards ranging from rhyolite to dacite in composition. [1] Smith, E. I. et al. Nature 555, 511, 2018 [2] Jacobs, Z. & Roberts, R. G. Journal of Archaeological Science 63, 175-192, 2015. [3] Tribolo, C. et al. Journal of Archaeological Science 40, 3401-3411 2013.« less
  5. ABSTRACT Cast iron objects recovered primarily in eastern Mongolia, spanning the Xiongnu through the Early Historic periods (ca. 3rd BC–AD 17th century), were examined for their radiocarbon ( 14 C) concentration and microstructure. Most of the samples examined were found to have originated from charcoal-based smelting with a few exceptions that were made using a mineral coal-based technique. A comparison of 14 C dates with dates derived from artifact typology allowed the charcoal-smelted objects to be classified into two groups, based on whether the radiometric and typological periodization are in agreement or not. In addition, those with differing 14 C and typological dates can be divided into two subgroups with and without evidence for a melt treatment applied after original casting. These conflicting dating results are confusing and would seem to provoke skepticism about the use of 14 C measurements for dating iron artifacts. We demonstrate however that 14 C analysis, when combined with metallographic examination and other lines of chronological evidence, can clarify the history of a given iron object and its multiple users, often separated in time by more than a millennium.