skip to main content

Title: The Technological and Chronological Implication of 14C Concentrations in Carbon Samples Extracted from Mongolian Cast Iron Artifacts
ABSTRACT Cast iron objects recovered primarily in eastern Mongolia, spanning the Xiongnu through the Early Historic periods (ca. 3rd BC–AD 17th century), were examined for their radiocarbon ( 14 C) concentration and microstructure. Most of the samples examined were found to have originated from charcoal-based smelting with a few exceptions that were made using a mineral coal-based technique. A comparison of 14 C dates with dates derived from artifact typology allowed the charcoal-smelted objects to be classified into two groups, based on whether the radiometric and typological periodization are in agreement or not. In addition, those with differing 14 C and typological dates can be divided into two subgroups with and without evidence for a melt treatment applied after original casting. These conflicting dating results are confusing and would seem to provoke skepticism about the use of 14 C measurements for dating iron artifacts. We demonstrate however that 14 C analysis, when combined with metallographic examination and other lines of chronological evidence, can clarify the history of a given iron object and its multiple users, often separated in time by more than a millennium.
Authors:
; ;
Award ID(s):
1737687
Publication Date:
NSF-PAR ID:
10112752
Journal Name:
Radiocarbon
Volume:
61
Issue:
03
Page Range or eLocation-ID:
831 to 843
ISSN:
0033-8222
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Reversals and plateaus in the radiocarbon ( 14 C) calibration curve lead to similar 14 C ages applying to a wide range of calendar dates, creating imprecision, ambiguity, and challenges for archaeological dating. Even with Bayesian chronological modeling, such periods remain a problem when no known order—e.g., a stratigraphic sequence—exists, and especially if site durations are relatively short. Using the reversal/plateau AD 1480–1630 and the archaeology of northeastern North America as our example, we consider possible strategies to improve chronological resolution across such reversal/plateau periods in the absence of stratigraphic sequences, including uses of wood-charcoal TPQs from even very short wiggle-matches, and site phase duration constraints based on ethnohistoric and archaeological evidence.
  2. ABSTRACT Considered in isolation, the radiocarbon ( 14 C) dates on short-lived plant remains from the Jean-Baptiste Lainé (formerly Mantle) site, Ontario, yield an ambiguous result: more or less similar probability around AD 1500 or alternatively around AD 1600. This village site, likely of no more than ca. 20–30 years total duration, illustrates the challenges of high-resolution dating across periods with a reversal/plateau in the 14 C calibration curve. Another problem we identify is the tendency for dating probability for short-duration sites to sometimes be overly compressed as dating intensity increases under analysis with OxCal, and for probability to shift away from the real age range especially during reversal/plateau episodes. To address both issues additional constraints are necessary. While a tree-ring sequenced 14 C “wiggle-match” is the best option where available, we investigate how, in the absence of such an option, use of the in-built age in wood-charcoal samples can be used to distinguish the likely correct date range. This approach can resolve ambiguities in dating, e.g., for shorter-duration Late Woodland village sites in northeastern North America, but also other short-duration cases corresponding with reversal/plateau episodes on the 14 C calibration curve. We place the Jean-Baptiste Lainé site most likelymore »in a range between ca. AD 1595–1626 (95.4% probability).« less
  3. Abstract This study addresses the development of an absolute chronology for prominent burial sites of Inner Asian nomadic cultures. We investigate Saka archaeological wood from a well-known gold-filled Baigetobe kurgan (burial mound #1 of Shilikty-3 cemetery) to estimate its calendar age using tree-ring and 14 C dating. The Saka was the southernmost tribal group of Asian Scythians, who roamed Central Asia during the 1st millennium BC (Iron Age). The Shilikty is a large burial site located in the Altai Mountains along the border between Kazakhstan and China. We present a new floating tree-ring chronology of larch and five new 14 C dates from the construction timbers of the Baigetobe kurgan. The results of Bayesian modeling suggest the age of studied timbers is ~730–690 cal BC. This places the kurgan in early Scythian time and authenticates a previously suggested age of the Baigetobe gold collection between the 8th and 7th centuries BC derived from the typology of grave goods and burial rites. Chronologically and stylistically, the Scythian Animal Style gold from the Baigetobe kurgan is closer to Early Scythians in the North Caucasus and Tuva than to the local Saka occurrences in the Kazakh Altai. Our dating results indicate that themore »Baigetobe kurgan was nearly contemporaneous to the Arjan-2 kurgan (Tuva) and could be one of the earliest kurgans of the Saka-Scythian elite in Central Asia.« less
  4. Plant biosilica particles (phytoliths) contain small amounts of carbon called phytC. Based on the assumptions that phytC is of photosynthetic origin and a closed system, claims were recently made that phytoliths from several agriculturally important monocotyledonous species play a significant role in atmospheric CO2 sequestration. However, anomalous phytC radiocarbon (14C) dates suggested contributions from a non-photosynthetic source to phytC. Here we address this non-photosynthetic source hypothesis using comparative isotopic measurements (14C and δ13C) of phytC, plant tissues, atmospheric CO2, and soil organic matter. State-of-the-art methods assured phytolith purity, while sequential stepwise-combustion revealed complex chemical-thermal decomposability properties of phytC. Although photosynthesis is the main source of carbon in plant tissue, it was found that phytC is partially derived from soil carbon that can be several thousand years old. The fact that phytC is not uniquely constituted of photosynthetic C limits the usefulness of phytC either as a dating tool or as a significant sink of atmospheric CO2. It additionally calls for further experiments to investigate how SOM-derived C is accessible to roots and accumulates in plant biosilica, for a better understanding of the mechanistic processes underlying the silicon biomineralization process in higher plants.
  5. The relative importance of climate and humans in the disappearance of the Malagasy megafauna remains under debate. Data from southwestern Madagascar imply aridification contributed substantially to the late Holocene decline of the megafauna (the Aridification Hypothesis). Evidence for aridification includes carbon isotopes from tree rings, lacustrine charcoal concentrations and pollen assemblages, and changes in fossil vertebrate assemblages indicative of a local loss of pluvial conditions. In contrast, speleothem records from northwestern Madagascar suggest that megafaunal decline and habitat change resulted primarily from human activity including agropastoralism (the Subsistence Shift Hypothesis). Could there have been contrasting mechanisms of decline in different parts of Madagascar? Or are we lacking the precisely dated, high resolution records needed to fully understand the complex processes behind megafaunal decline? Reconciling these contrasting hypotheses requires additional climate records from southwestern Madagascar. We recovered a stalagmite (AF2) from Asafora Cave in the spiny thicket ecoregion, ~10 km from the southwest coast and just southeast of the Velondriake Marine Reserve. U-series and 14C dating of samples taken from the core of this stalagmite provide a highly precise chronology of the changes in hydroclimate and vegetation in this region over the past 3000 years. Speleothem stable oxygen and carbon isotopemore »analyses provide insight into past rainfall variability and vegetation changes respectively. We compare these records with those for a stalagmite (AB2) from Anjohibe Cave in northwestern Madagascar. Lastly, odds ratio analyses of radiocarbon dates for extinct and extant subfossils allow us to describe and compare the temporal trajectories of megafaunal decline in the southwest and the northwest. Combined, these analyses allow us to test the Aridification Hypothesis for megafaunal extinction. The trajectories of megafaunal decline differed in northwestern and southwestern Madagascar. In the southwest, unlike the northwest, there is no evidence of decoupling of speleothem stable carbon and oxygen isotopes. Instead, habitat changes in the southwest were largely related to variation in hydroclimate (including a prolonged drought). The megafaunal collapse here occurred in tandem with the drought, and agropastoralism likely contributed to that demise only after the megafauna had already suffered drought-related population reduction. Our results offer some support for the Aridification Hypothesis, but with three caveats: first, that there was no island-wide aridification; second, that aridification likely impacted megafaunal decline only in the driest parts of Madagascar; and third, that aridification was not the sole factor promotingmegafaunal decline even in the dry southwest. A number of megafaunal species survived the prolonged drought of the first millennium, and then likely succumbed to the activities of agropastoralists.« less