Abstract Co‐crystallization of a pyridyl‐containing arylethynyl (AE) moiety with 1,4‐diiodotetrafluorobenzene leads to unique, figure‐eight shaped helical motifs within the crystal lattice. A slight twist in the AE backbone allows each AE unit to simultaneously interact with haloarene units that are stacked on top of one another. Left‐handed (M) and right‐handed (P) helices are interspersed in a regular pattern throughout the crystal. The major driving forces for assembly are 1) halogen bonding between the pyridyl nitrogen atoms and the iodine substituents of the haloarene, with N⋅⋅⋅I distances between 2.81 and 2.84 Å, and 2) π‐π stacking of the haloarenes, with distances of approximately 3.57 Å between centroids. Halogen bonding and π‐π stacking not only work in concert, but also seem to mutually enhance one another. Calculations suggest that the presence of π‐π stacking modestly intensifies the halogen bonding interaction by <0.2 kcal/mol; likewise, halogen bonding to the haloarene enhances the π‐π stacking interaction by 0.59 kcal/mol.
more »
« less
Mechanistic insights into the pressure-induced polymerization of aryl/perfluoroaryl co-crystals
Recently discovered diamond nanothreads offer a stiff, sp 3 -hybridized backbone unachievable in conventional polymer synthesis that is formed through the solid-state pressure-induced polymerization of simple aromatics. This method enables monomeric A-B alternation to fully translate from co-crystal design to polymer backbone in a sequence-defined manner. Here, we report the compression of aryl:perfluoroaryl (Ar/ArF) co-crystals containing –OH and –CHO functional groups. We analyze the tolerance of these functional groups to polymerization, explore the possibility of keto–enol tautomerization, and compare the reaction outcomes of targeted solid-state Ar/ArF design on nanothread formation. Two new co-crystals comprising phenol:pentafluorobenzaldehyde (ArOH:ArFCHO) and benzaldehdye:pentafluorophenol (ArCHO:ArFOH) were synthesized through slow solvent evaporation. Analysis of the single-crystal structures revealed different hydrogen bonding patterns between the –OH and –CHO in each solid (tape and orthogonal dimers, respectively), in addition to markedly different π–π stacking distances within the Ar/ArF synthons. In situ Raman spectroscopy was used to monitor the compression of each co-crystal to 21 GPa and illustrated peak shifts for the –OH and –CHO stretching regions during compression. Photoluminescence corresponding to polymerization appeared at a lower pressure for the co-crystal with the smallest π–π stacking distance. Nevertheless, the recovered solid with the larger centroid : centroid and centroid : plane π–π stacking distances featured a diffraction ring consistent with the anticipated dimensions of a co-crystal-derived nanothread packing, indicating that both functional group interactions and parallel stacking affect the pressure-induced polymerization to form nanothreads. IR spectroscopy of the recovered samples revealed large shifts in the –OH & –CHO stretching regions, particularly noticable for ArCHO:ArFOH, which may reflect geometrical constraints associated with forming a rigid thread backbone under pressure. Simulation suggests that hydrogen bonding networks may affect the relative compressibility of the co-crystal along a thread-forming axis to modulate the propensity for nanothread formation.
more »
« less
- Award ID(s):
- 1832471
- PAR ID:
- 10377949
- Date Published:
- Journal Name:
- Polymer Chemistry
- Volume:
- 13
- Issue:
- 10
- ISSN:
- 1759-9954
- Page Range / eLocation ID:
- 1359 to 1368
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Recent advancements in material science exploit non-covalent interactions, such as halogen bonding (XB) or π-stacking within solid-state molecular frameworks for application in organic electronic devices. Herein, we focus on these and other non-covalent interactions and the effect that furan and thiophene substituents play on the solid-state properties of co-crystals formed between pentafluoro(iodoethynyl)benzene ( F 5 BAI ; XB donor) and a pyridine disubstituted with either furans or thiophenes ( PyrFur 2 and PyrThio 2 ; XB acceptors). Spectroscopic and thermal analyses of 1 : 1 mixtures provide indirect evidence of XB interactions, whereas X-ray crystallography provides direct evidence that XB and π-stacking are present in both co-crystals. Density functional theory (DFT) computations provide insight into the relative electronic energetics of each pair-wise contact observed in the experimental F 5 BAI-PyrFur 2 and F 5 BAI-PyrThio 2 co-crystals.more » « less
-
Co-crystal engineering is a promising method to create new classes of advanced materials. Co-crystal structure prediction is more challenging when one or more of the lattice constituents (tectons) are flexible molecules. This study reports four co-crystals that were prepared by mixing HAuCl 4 or HAuBr 4 with C 3 -symmetric tectons based on a 1,3,5-(methylacetamide)benzene scaffold. X-ray analysis of the co-crystals revealed the presence of three dominant supramolecular interactions; (a) hydrogen bonding between tecton amide NH residues and the AuX 4 − anion, (b) electrostatic stacking of the Au center against the tecton's π-electrons, (c) very short hydrogen bonds within a proton-bridged-carbonyls motif. Within all four co-crystals, the sterically-geared tecton was trapped in a high energy molecular conformation, which increased the number of favorable intermolecular interactions in the lattice. We infer from the results that the likelihood of high energy molecular conformations within a co-crystal increases if there are multiple dominant intermolecular interactions. Application of this generalizable rule should lead to improved crystal structure prediction.more » « less
-
The self-assembly of amphiphilic molecules in water has led to a wide variety of nanostructures with diverse applications. Many nanostructures are stabilized by strong interactions between monomer units, such as hydrogen bonding and π–π stacking. However, the morphological implications of these strong, anisotropic interactions can be difficult to predict. In this study, we investigate the relationships between molecular flexibility, head group repulsion, and supramolecular geometry in an aramid amphiphile nanostructure that is known to exhibit extensive hydrogen bonding and π–π stacking – features that give rise to their unusual stability. We find by electron microscopy that increasing backbone flexibility disrupts molecular packing into high aspect-ratio nanoribbons, and at the highest degree of flexibility long-range ordering is lost. Even when backbone rigidity favors tight packing, increasing head group charge through pH-modulation leads to intermolecular electrostatic repulsion that also disrupts close packing. Spectroscopic measurements suggest that these changes are accompanied by disruption of π–π stacking but not hydrogen bonding. Backbone rigidity and head group repulsion are thus important design considerations for controlling internal stability and nanostructure curvature in supramolecular assemblies stabilized by π–π stacking interactions.more » « less
-
A Raman Spectroscopic and Computational Study of New Aromatic Pyrimidine-Based Halogen Bond AcceptorTwo new aromatic pyrimidine-based derivatives designed specifically for halogen bond directed self-assembly are investigated through a combination of high-resolution Raman spectroscopy, X-ray crystallography, and computational quantum chemistry. The vibrational frequencies of these new molecular building blocks, pyrimidine capped with furan (PrmF) and thiophene (PrmT), are compared to those previously assigned for pyrimidine (Prm). The modifications affect only a select few of the normal modes of Prm, most noticeably its signature ring breathing mode, ν1. Structural analyses afforded by X-ray crystallography, and computed interaction energies from density functional theory computations indicate that, although weak hydrogen bonding (C–H···O or C–H···N interactions) is present in these pyrimidine-based solid-state co-crystals, halogen bonding and π-stacking interactions play more dominant roles in driving their molecular-assembly.more » « less
An official website of the United States government

