skip to main content


Title: Peer-Modeled Mindsets: An Approach to Customizing Life Sciences Studying Interventions
Mindset interventions, which shift students’ beliefs about classroom experiences, have shown promise for promoting diversity in science, technology, engineering, and mathematics (STEM). Psychologists have emphasized the importance of customizing these interventions to specific courses, but there is not yet a protocol for doing so. We developed a protocol for creating customized “peer-modeled” mindset interventions that elicit advice from former students in videotaped interviews. In intervention activities, clips from these interviews, in which the former students’ stories model the changes in thinking about challenge and struggle that helped them succeed in a specific course, are provided to incoming life sciences students. Using this protocol, we developed a customized intervention for three sections of Introductory Biology I at a large university and tested it in a randomized controlled trial ( N = 917). The intervention shifted students’ attributions for struggle in the class away from a lack of potential to succeed and toward the need to develop a better approach to studying. The intervention also improved students’ approaches to studying and sense of belonging and had promising effects on performance and persistence in biology. Effects were pronounced among first-generation college students and underrepresented racial/ethnic minority students, who have been historically underrepresented in the STEM fields.  more » « less
Award ID(s):
1761179 2004831
NSF-PAR ID:
10377981
Author(s) / Creator(s):
; ; ; ;
Editor(s):
Dolan, Erin L.
Date Published:
Journal Name:
CBE—Life Sciences Education
Volume:
21
Issue:
4
ISSN:
1931-7913
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. There is a critical need for more students with engineering and computer science majors to enter into, persist in, and graduate from four-year postsecondary institutions. Increasing the diversity of the workforce by inclusive practices in engineering and science is also a profound identified need. According to national statistics, the largest groups of underrepresented minority students in engineering and science attend U.S. public higher education institutions. Most often, a large proportion of these students come to colleges and universities with unique challenges and needs, and are more likely to be first in their family to attend college. In response to these needs, engineering education researchers and practitioners have developed, implemented and assessed interventions to provide support and help students succeed in college, particularly in their first year. These interventions typically target relatively small cohorts of students and can be managed by a small number of faculty and staff. In this paper, we report on “work in progress” research in a large-scale, first-year engineering and computer science intervention program at a public, comprehensive university using multivariate comparative statistical approaches. Large-scale intervention programs are especially relevant to minority serving institutions that prepare growing numbers of students who are first in their family to attend college and who are also under-resourced, financially. These students most often encounter academic difficulties and come to higher education with challenging experiences and backgrounds. Our studied first-year intervention program, first piloted in 2015, is now in its 5th year of implementation. Its intervention components include: (a) first-year block schedules, (b) project-based introductory engineering and computer science courses, (c) an introduction to mechanics course, which provides students with the foundation needed to succeed in a traditional physics sequence, and (d) peer-led supplemental instruction workshops for calculus, physics and chemistry courses. This intervention study responds to three research questions: (1) What role does the first-year intervention’s components play in students’ persistence in engineering and computer science majors across undergraduate program years? (2) What role do particular pedagogical and cocurricular support structures play in students’ successes? And (3) What role do various student socio-demographic and experiential factors play in the effectiveness of first-year interventions? To address these research questions and therefore determine the formative impact of the firstyear engineering and computer science program on which we are conducting research, we have collected diverse student data including grade point averages, concept inventory scores, and data from a multi-dimensional questionnaire that measures students’ use of support practices across their four to five years in their degree program, and diverse background information necessary to determine the impact of such factors on students’ persistence to degree. Background data includes students’ experiences prior to enrolling in college, their socio-demographic characteristics, and their college social capital throughout their higher education experience. For this research, we compared students who were enrolled in the first-year intervention program to those who were not enrolled in the first-year intervention. We have engaged in cross-sectional 2 data collection from students’ freshman through senior years and employed multivariate statistical analytical techniques on the collected student data. Results of these analyses were interesting and diverse. Generally, in terms of backgrounds, our research indicates that students’ parental education is positively related to their success in engineering and computer science across program years. Likewise, longitudinally (across program years), students’ college social capital predicted their academic success and persistence to degree. With regard to the study’s comparative research of the first-year intervention, our results indicate that students who were enrolled in the first-year intervention program as freshmen continued to use more support practices to assist them in academic success across their degree matriculation compared to students who were not in the first-year program. This suggests that the students continued to recognize the value of such supports as a consequence of having supports required as first-year students. In terms of students’ understanding of scientific or engineering-focused concepts, we found significant impact resulting from student support practices that were academically focused. We also found that enrolling in the first-year intervention was a significant predictor of the time that students spent preparing for classes and ultimately their grade point average, especially in STEM subjects across students’ years in college. In summary, we found that the studied first-year intervention program has longitudinal, positive impacts on students’ success as they navigate through their undergraduate experiences toward engineering and computer science degrees. 
    more » « less
  2. Improving undergraduate STEM teaching for diverse students is dependent to some extent on increasing the representation of Black, Indigenous and People of Color (BIPOC) and women in the ranks of faculty in engineering departments. However, new faculty members, whether they had postdoctoral training or not, report that they were not adequately prepared for academia. To address this need, a professional development program was developed for underrepresented doctoral and postdoctoral students, which focused on various strategies to be successful in teaching, research and service aspects of academic positions. The program included an intensive two-week summer session, with follow-up mentoring during the academic year, and was conducted from 2017 to 2020 with three cohorts of fellows recruited from across the country. To evaluate the impact of the program on the participants’ perceptions of their preparation for academic careers, a follow up survey was sent in May 2021 to the three former cohorts of participants (n=61), and responses were received from 37 of them. The survey asked participants to reflect on areas that they felt most prepared for in their academic positions, and areas that they felt least prepared for. The survey also asked participants to discuss additional supports they would have liked to have been provided with to better prepare them given their current positions (academic, industry, etc.). Results from the survey indicated that 92% of participants found the professional development program prepared them for the responsibilities and expectations to succeed in academic positions. Over 90% agreed that the program prepared them for the application process for a tenure track search, and 89% agreed the program prepared them for the primary components of the startup package. In addition, participants reported that the program increased their preparation in developing teaching philosophy (100%), developing learning outcomes (97%), and using active learning strategies during teaching (91%). The majority agreed that the program helped prepare them to teach students with various cultural backgrounds, and to develop and use assessment strategies. Participants were also asked to discuss the impact of the Covid 19 pandemic on their career trajectory, and most of them reported being somewhat impacted (65%) to extremely impacted (29%). Participants reported few or no job openings, cancelations of interviews, delays in research which impacted the rate of completing degrees, and publications, which affected the participants’ application competitiveness. Furthermore, working from home and balancing family and academic responsibilities affected their productivity. Based on the survey results, funds were secured to provide an additional day of professional training to cover any items not addressed during summer training, as well as any issues, challenges, or concerns they might have encountered while fulfilling their academic position. Thirty-three ACADEME fellows have indicated that they will participate in the new professional development, held in May 2022. Results from this analysis, and preliminary topics and outcomes of the supplemental activities are discussed. The findings contribute to the literature by increasing knowledge of specific challenges that new faculty encounter and can inform future efforts to support minorities and women in engineering doctoral programs. 
    more » « less
  3. Improving undergraduate STEM teaching for diverse students is dependent to some extent on increasing the representation of Black, Indigenous and People of Color (BIPOC) and women in the ranks of faculty in engineering departments. However, new faculty members, whether they had postdoctoral training or not, report that they were not adequately prepared for academia. To address this need, a professional development program was developed for underrepresented doctoral and postdoctoral students, which focused on various strategies to be successful in teaching, research and service aspects of academic positions. The program included an intensive two-week summer session, with follow-up mentoring during the academic year, and was conducted from 2017 to 2020 with three cohorts of fellows recruited from across the country. To evaluate the impact of the program on the participants’ perceptions of their preparation for academic careers, a follow up survey was sent in May 2021 to the three former cohorts of participants (n=61), and responses were received from 37 of them. The survey asked participants to reflect on areas that they felt most prepared for in their academic positions, and areas that they felt least prepared for. The survey also asked participants to discuss additional supports they would have liked to have been provided with to better prepare them given their current positions (academic, industry, etc.). Results from the survey indicated that 92% of participants found the professional development program prepared them for the responsibilities and expectations to succeed in academic positions. Over 90% agreed that the program prepared them for the application process for a tenure track search, and 89% agreed the program prepared them for the primary components of the startup package. In addition, participants reported that the program increased their preparation in developing teaching philosophy (100%), developing learning outcomes (97%), and using active learning strategies during teaching (91%). The majority agreed that the program helped prepare them to teach students with various cultural backgrounds, and to develop and use assessment strategies. Participants were also asked to discuss the impact of the Covid 19 pandemic on their career trajectory, and most of them reported being somewhat impacted (65%) to extremely impacted (29%). Participants reported few or no job openings, cancelations of interviews, delays in research which impacted the rate of completing degrees, and publications, which affected the participants’ application competitiveness. Furthermore, working from home and balancing family and academic responsibilities affected their productivity. Based on the survey results, funds were secured to provide an additional day of professional training to cover any items not addressed during summer training, as well as any issues, challenges, or concerns they might have encountered while fulfilling their academic position. Thirty-three ACADEME fellows have indicated that they will participate in the new professional development, held in May 2022. Results from this analysis, and preliminary topics and outcomes of the supplemental activities are discussed. The findings contribute to the literature by increasing knowledge of specific challenges that new faculty encounter and can inform future efforts to support minorities and women in engineering doctoral programs. 
    more » « less
  4. Need/Motivation (e.g., goals, gaps in knowledge) The ESTEEM implemented a STEM building capacity project through students’ early access to a sustainable and innovative STEM Stepping Stones, called Micro-Internships (MI). The goal is to reap key benefits of a full-length internship and undergraduate research experiences in an abbreviated format, including access, success, degree completion, transfer, and recruiting and retaining more Latinx and underrepresented students into the STEM workforce. The MIs are designed with the goals to provide opportunities for students at a community college and HSI, with authentic STEM research and applied learning experiences (ALE), support for appropriate STEM pathway/career, preparation and confidence to succeed in STEM and engage in summer long REUs, and with improved outcomes. The MI projects are accessible early to more students and build momentum to better overcome critical obstacles to success. The MIs are shorter, flexibly scheduled throughout the year, easily accessible, and participation in multiple MI is encouraged. ESTEEM also establishes a sustainable and collaborative model, working with partners from BSCS Science Education, for MI’s mentor, training, compliance, and building capacity, with shared values and practices to maximize the improvement of student outcomes. New Knowledge (e.g., hypothesis, research questions) Research indicates that REU/internship experiences can be particularly powerful for students from Latinx and underrepresented groups in STEM. However, those experiences are difficult to access for many HSI-community college students (85% of our students hold off-campus jobs), and lack of confidence is a barrier for a majority of our students. The gap between those who can and those who cannot is the “internship access gap.” This project is at a central California Community College (CCC) and HSI, the only affordable post-secondary option in a region serving a historically underrepresented population in STEM, including 75% Hispanic, and 87% have not completed college. MI is designed to reduce inequalities inherent in the internship paradigm by providing access to professional and research skills for those underserved students. The MI has been designed to reduce barriers by offering: shorter duration (25 contact hours); flexible timing (one week to once a week over many weeks); open access/large group; and proximal location (on-campus). MI mentors participate in week-long summer workshops and ongoing monthly community of practice with the goal of co-constructing a shared vision, engaging in conversations about pedagogy and learning, and sustaining the MI program going forward. Approach (e.g., objectives/specific aims, research methodologies, and analysis) Research Question and Methodology: We want to know: How does participation in a micro-internship affect students’ interest and confidence to pursue STEM? We used a mixed-methods design triangulating quantitative Likert-style survey data with interpretive coding of open-responses to reveal themes in students’ motivations, attitudes toward STEM, and confidence. Participants: The study sampled students enrolled either part-time or full-time at the community college. Although each MI was classified within STEM, they were open to any interested student in any major. Demographically, participants self-identified as 70% Hispanic/Latinx, 13% Mixed-Race, and 42 female. Instrument: Student surveys were developed from two previously validated instruments that examine the impact of the MI intervention on student interest in STEM careers and pursuing internships/REUs. Also, the pre- and post (every e months to assess longitudinal outcomes) -surveys included relevant open response prompts. The surveys collected students’ demographics; interest, confidence, and motivation in pursuing a career in STEM; perceived obstacles; and past experiences with internships and MIs. 171 students responded to the pre-survey at the time of submission. Outcomes (e.g., preliminary findings, accomplishments to date) Because we just finished year 1, we lack at this time longitudinal data to reveal if student confidence is maintained over time and whether or not students are more likely to (i) enroll in more internships, (ii) transfer to a four-year university, or (iii) shorten the time it takes for degree attainment. For short term outcomes, students significantly Increased their confidence to continue pursuing opportunities to develop within the STEM pipeline, including full-length internships, completing STEM degrees, and applying for jobs in STEM. For example, using a 2-tailed t-test we compared means before and after the MI experience. 15 out of 16 questions that showed improvement in scores were related to student confidence to pursue STEM or perceived enjoyment of a STEM career. Finding from the free-response questions, showed that the majority of students reported enrolling in the MI to gain knowledge and experience. After the MI, 66% of students reported having gained valuable knowledge and experience, and 35% of students spoke about gaining confidence and/or momentum to pursue STEM as a career. Broader Impacts (e.g., the participation of underrepresented minorities in STEM; development of a diverse STEM workforce, enhanced infrastructure for research and education) The ESTEEM project has the potential for a transformational impact on STEM undergraduate education’s access and success for underrepresented and Latinx community college students, as well as for STEM capacity building at Hartnell College, a CCC and HSI, for students, faculty, professionals, and processes that foster research in STEM and education. Through sharing and transfer abilities of the ESTEEM model to similar institutions, the project has the potential to change the way students are served at an early and critical stage of their higher education experience at CCC, where one in every five community college student in the nation attends a CCC, over 67% of CCC students identify themselves with ethnic backgrounds that are not White, and 40 to 50% of University of California and California State University graduates in STEM started at a CCC, thus making it a key leverage point for recruiting and retaining a more diverse STEM workforce. 
    more » « less
  5. Access to lower-division engineering courses in the community college substantially influences whether or not community college students pursue and successfully achieve an engineering degree. With about 60% of students from under-represented minority (URM) groups beginning their post-secondary education in the community colleges, providing this access is critical if the US is to diversify and expand its engineering workforce. Still many community college lack the faculty, equipment, or local expertise to offer a comprehensive transfer engineering program, thus compromising participation in engineering courses for underrepresented groups as well as for students residing in rural and remote areas, where distance is a key barrier to post-secondary enrollment. An additional obstacle to participation is the need for so many community college students to work, many in inflexible positions that compromise their ability to attend traditional face-to-face courses. Through a grant from the National Science Foundation Improving Undergraduate STEM Education program (NSF IUSE), three community colleges from Northern California collaborated to increase the availability and accessibility of the engineering curriculum by developing resources and teaching strategies to enable small-to-medium community college engineering programs to support a comprehensive set of lower-division engineering courses that are delivered either completely online, or with limited face-to-face interactions. This paper focuses on the development and testing of the teaching and learning resources for Introduction to Engineering, a three-unit course (two units of lecture and one unit of lab). The course has special significance as a gateway course for students who without the role models that their middle class peers so often have readily available enter college with very limited awareness of the exciting projects and fulfilling careers the engineering profession offers as well as with apprehension about their ability to succeed in a demanding STEM curriculum. To this end, the course covers academic success skills in engineering including mindset and metacognition, academic pathways, career awareness and job functions in the engineering profession, team building and communications, the engineering design process, and a broad range of fundamental and engaging topics and projects in engineering including electronics, basic test equipment, programming in MATLAB and Arduino, robotics, bridge design, and materials science. The paper presents the results of a pilot implementation of the teaching materials in a regular face-to-face course which will be used to inform subsequent on-line delivery. Additionally, student surveys and interviews are used to assess students’ perceptions of the effectiveness of the course resources, along with their sense of self-efficacy and identity as aspiring engineers. 
    more » « less