skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A generalized kinetic model for compartmentalization of organometallic catalysis
Compartmentalization is an attractive approach to enhance catalytic activity by retaining reactive intermediates and mitigating deactivating pathways. Such a concept has been well explored in biochemical and more recently, organometallic catalysis to ensure high reaction turnovers with minimal side reactions. However, the scarcity of theoretical frameworks towards confined organometallic chemistry impedes broader utility for the implementation of compartmentalization. Herein, we report a general kinetic model and offer design guidance for a compartmentalized organometallic catalytic cycle. In comparison to a non-compartmentalized catalysis, compartmentalization is quantitatively shown to prevent the unwanted intermediate deactivation, boost the corresponding reaction efficiency ( γ ), and subsequently increase catalytic turnover frequency (TOF). The key parameter in the model is the volumetric diffusive conductance ( F V ) that describes catalysts' diffusion propensity across a compartment's boundary. Optimal values of F V for a specific organometallic chemistry are needed to achieve maximal values of γ and TOF. As illustrated in specific reaction examples, our model suggests that a tailored compartment design, including the use of nanomaterials, is needed to suit a specific organometallic catalytic cycle. This work provides justification and design principles for further exploration into compartmentalizing organometallics to enhance catalytic performance. The conclusions from this work are generally applicable to other catalytic systems that need proper design guidance in confinement and compartmentalization.  more » « less
Award ID(s):
2023955 2027330
PAR ID:
10378048
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Chemical Science
Volume:
13
Issue:
4
ISSN:
2041-6520
Page Range / eLocation ID:
1101 to 1110
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Compartmentalization is a viable approach for ensuring the turnover of a solution cascade reaction with ephemeral intermediates, which may otherwise deactivate in the bulk solution. In biochemistry or enzyme-relevant cascade reactions, extensive models have been constructed to quantitatively analyze the efficacy of compartmentalization. Nonetheless, the application of compartmentalization and its quantitative analysis in non-biochemical reactions is seldom performed, leaving much uncertainty about whether compartmentalization remains effective for non-biochemical reactions, such as organometallic, cascade reactions. Here, we report our exemplary efficacy analysis of compartmentalization in our previously reported cascade reaction for ambient CH 4 -to-CH 3 OH conversion, mediated by an O 2 -deactivated Rh II metalloradical with O 2 as the terminal oxidant in a Si nanowire array electrode. We experimentally identified and quantified the key reaction intermediates, including the Rh II metalloradical and reactive oxygen species (ROS) from O 2 . Based on such findings, we experimentally determined that the nanowire array enables about 81% of the generated ephemeral intermediate Rh II metalloradical in air, to be utilized towards CH 3 OH formation, which is 0% in a homogeneous solution. Such an experimentally determined value was satisfactorily consistent with the results from our semi-quantitative kinetic model. The consistency suggests that the reported CH 4 -to-CH 3 OH conversion surprisingly possesses minimal unforeseen side reactions, and is favorably efficient as a compartmentalized cascade reaction. Our quantitative evaluation of the reaction efficacy offers design insights and caveats into application of nanomaterials to achieve spatially controlled organometallic cascade reactions. 
    more » « less
  2. A combination of high-throughput experimentation (HTE), surface organometallic chemistry (SOMC) and statistical data analysis provided the platform to analyze in situ silica-grafted Mo imido alkylidene catalysts based on a library of 35 phenols. Overall, these tools allowed for the identification of σ-donor electronic effects and dispersive interactions and as key drivers in a prototypical metathesis reaction, homodimerization of 1-nonene. Univariate and multivariate correlation analysis confirmed the categorization of the catalytic data into two groups, depending on the presence of aryl groups in ortho position of the phenol ligand. The initial activity (TOF in ) was predominantly correlated to the σ-donor ability of the aryloxy ligands, while the overall catalytic performance (TON 1 h ) was mainly dependent on attractive dispersive interactions with the used phenol ligands featuring aryl ortho substituents and, in sharp contrast, repulsive dispersive interactions with phenol free of aryl ortho substituents. This work outlines a fast and efficient workflow of gaining molecular-level insight into supported metathesis catalysts and highlights σ-donor ability and noncovalent interactions as crucial properties for designing active d 0 supported metathesis catalysts. 
    more » « less
  3. Ethylene oxidation by Ag catalysts has been extensively investigated over the past few decades, but many key fundamental issues about this important catalytic system are still unresolved. This overview of the selective oxidation of ethylene to ethylene oxide by Ag catalysts critically examines the experimental and theoretical literature of this complex catalytic system: (i) the surface chemistry of silver catalysts (single crystal, powder/foil, and supported Ag/α-Al2O3), (ii) the role of promoters, (iii) the reaction kinetics, (iv) the reaction mechanism, (v) density functional theory (DFT), and (vi) microkinetic modeling. Only in the past few years have the modern catalysis research tools of in situ/operando spectroscopy and DFT calculations been applied to begin establishing fundamental structure−activity/selectivity relationships. This overview of the ethylene oxidation reaction by Ag catalysts covers what is known and what issues still need to be determined to advance the rational design of this important catalytic system. 
    more » « less
  4. Solvents are the major source of chemical waste from synthetic chemistry labs. Growing attention to more environmentally friendly sustainable processes demands novel technologies to substitute toxic or hazardous solvents. If not always, sometimes, water can be a suitable substitute for organic solvents, if used appropriately. However, the sole use of water as a solvent remains non-practical due to its incompatibility with organic reagents. Nonetheless, over the past few years, new additives have been disclosed to achieve chemistry in water that also include aqueous micelles as nanoreactors. Although one cannot claim micellar catalysis to be a greener technology for every single transformation, it remains the sustainable or greener alternative for many reactions. Literature precedents support that micellar technology has much more potential than just as a reaction medium, i.e. , the role of the amphiphile as a ligand obviating phosphine ligands in catalysis, the shielding effect of micelles to protect water-sensitive reaction intermediates in catalysis, and the compartmentalization effect. While compiling the powerful impact of micellar catalysis, this article highlights two diverse recent technologies: (i) the design and employment of the surfactant PS-750-M in selective catalysis; (ii) the use of the semisynthetic HPMC polymer to enable ultrafast reactions in water. 
    more » « less
  5. Nickel-chromium-molybdenum (NiCrMo) alloys are well-known for having exceptional corrosion resistance, but their electrocatalytic properties have not been extensively studied. In this paper, the development of electro-active nickel-oxyhydroxide (NiOOH) phases and kinetics of the oxygen evolution reaction (OER) have been examined on alloys G35, B3, and C276 in alkaline electrolyte at 25 °C. Reproducible oxide layers were grown by potential cycling between 0.85 and 1.52 V vs RHE up to 600 cycles, and the transition between Ni(OH) 2 and NiOOH was monitored by cyclic voltammetry throughout. Onset potentials, Tafel slopes, and turnover frequencies (TOF) were measured at OER overpotentials between 270 and 390 mV. Alloys with dissimilar Cr:Mo ratios had significantly higher electrochemical surface area and increased γ -NiOOH formation, suggesting higher metal dissolution rates. The equal Cr:Mo concentration alloy and pure Ni developed a primarily β -NiOOH surface, and had 1.8–2.0 times larger TOF values than those containing significant γ -NiOOH. The NiCrMo alloys required smaller overpotentials (54–80 mV) to produce 10 mA cm −2 of OER current, and had comparable Tafel slopes to pure Ni. The findings here indicate a β -NiOOH-developed surface to be more OER-active than a γ -NiOOH-developed surface, and suggest certain NiCrMo alloys have promise as OER electrocatalysts. 
    more » « less