skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Aqueous micellar technology: an alternative beyond organic solvents
Solvents are the major source of chemical waste from synthetic chemistry labs. Growing attention to more environmentally friendly sustainable processes demands novel technologies to substitute toxic or hazardous solvents. If not always, sometimes, water can be a suitable substitute for organic solvents, if used appropriately. However, the sole use of water as a solvent remains non-practical due to its incompatibility with organic reagents. Nonetheless, over the past few years, new additives have been disclosed to achieve chemistry in water that also include aqueous micelles as nanoreactors. Although one cannot claim micellar catalysis to be a greener technology for every single transformation, it remains the sustainable or greener alternative for many reactions. Literature precedents support that micellar technology has much more potential than just as a reaction medium, i.e. , the role of the amphiphile as a ligand obviating phosphine ligands in catalysis, the shielding effect of micelles to protect water-sensitive reaction intermediates in catalysis, and the compartmentalization effect. While compiling the powerful impact of micellar catalysis, this article highlights two diverse recent technologies: (i) the design and employment of the surfactant PS-750-M in selective catalysis; (ii) the use of the semisynthetic HPMC polymer to enable ultrafast reactions in water.  more » « less
Award ID(s):
2044778
PAR ID:
10397119
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Chemical Communications
ISSN:
1359-7345
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Reducing the use of solvents is an important aim of green chemistry. Using micelles self-assembled from amphiphilic molecules dispersed in water (considered a green solvent) has facilitated reactions of organic compounds. When performing reactions in micelles, the hydrophobic effect can considerably accelerate apparent reaction rates, as well as enhance selectivity. Here, we review micellar reaction media and their potential role in sustainable chemical production. The focus of this review is applications of engineered amphiphilic systems for reactions (surface-active ionic liquids, designer surfactants, and block copolymers) as reaction media. Micelles are a versatile platform for performing a large array of organic chemistries using water as the bulk solvent. Building on this foundation, synthetic sequences combining several reaction steps in one pot have been developed. Telescoping multiple reactions can reduce solvent waste by limiting the volume of solvents, as well as eliminating purification processes. Thus, in particular, we review recent advances in “one-pot” multistep reactions achieved using micellar reaction media with potential applications in medicinal chemistry and agrochemistry. Photocatalyzed reactions in micellar reaction media are also discussed. In addition to the use of micelles, we emphasize the process (steps to isolate the product and reuse the catalyst). 
    more » « less
  2. Abstract Toxic organic solvents and electrolytes, traditionally indispensable for electro‐organic synthesis, are now being reconsidered. In developing more sustainable electro‐organic synthesis, we've harnessed the aqueous micelles as solvents and electrolyte‐like structures when deformed under an electric field. The technology is showcased in synthetically highly valued hydrodefluorination reactions of difluorinated indoles. This mild electrosynthetic method produces monofluorinated unprotected indole scaffolds. Our approach minimizes waste and enhances atom economy, reducing reliance on expensive and hazardous solvents and electrolytes. The surfactant's potential for recycling was verified for two cycles. Cyclic voltammetry analysis has corroborated that PS‐750‐M micelles in water establish a more efficient platform for hydrodefluorination. Our technology simplifies the production of monofluorinated indoles, which are crucial for many drug‐like molecules. 
    more » « less
  3. The photodegradation of avobenzone ( AV ), the only ultraviolet filter molecule approved by the Food and Drug Administration to absorb UVA radiation, is an important problem in sunscreen formulations. In this paper, the photophysics and photostability of AV in various solvent systems and in aqueous micelles are studied. AV in its keto–enol tautomer functions as an effective UVA protection agent. AV is highly susceptible to photoinduced diketonization in both nonpolar solvents and in aqueous aggregates but is considerably more stable in polar, protic solvents like methanol. By studying its stability in different surfactant solutions, we show that incorporation of AV into sodium dodecylsulfate (SDS) micelles can achieve stability levels comparable to neat methanol. Steady-state spectral shifts, fluorescence anisotropy, and time-resolved fluorescence decay measurements are all consistent with AV experiencing a polar environment after micellar encapsulation. It is proposed that AV is encapsulated in the palisade layer of the SDS micelles, which allows access to water molecules that facilitate the re-formation of the enol form after photon absorption and relaxation. Although the detailed mechanism of AV tautomerization remains unclear, this work suggests that tuning the chemical microenvironment of AV may be a useful strategy for improving sunscreen efficacy. 
    more » « less
  4. null (Ed.)
    Aqueous electrolytes are the leading candidate to meet the surging demand for safe and low-cost storage batteries. Aqueous electrolytes facilitate more sustainable battery technologies due to the attributes of being nonflammable, environmentally benign, and cost effective. Yet, water’s narrow electrochemical stability window remains the primary bottleneck for the development of high-energy aqueous batteries with long cycle life and infallible safety. Water’s electrolysis leads to either hydrogen evolution reaction (HER) or oxygen evolution reaction (OER), which causes a series of dire consequences, including poor Coulombic efficiency, short device longevity, and safety issues. These are often showstoppers of a new aqueous battery technology besides the low energy density. Prolific progress has been made in the understanding of HER and OER from both catalysis and battery fields. Unfortunately, a systematic review on these advances from a battery chemistry standpoint is lacking. This review provides in-depth discussions on the mechanisms of water electrolysis on electrodes, where we summarize the critical influencing factors applicable for a broad spectrum of aqueous battery systems. Recent progress and existing challenges on suppressing water electrolysis are discussed, and our perspectives on the future development of this field are provided. 
    more » « less
  5. Abstract In recent years, there has been a concerted drive to develop methods that are greener and more sustainable. Being an earth‐abundant transition metal, cobalt offers an attractive substitute for commonly employed precious metal catalysts, though reactions engaging cobalt are still less developed. Herein, we report a method to achieve the decarboxylative allylation of nitrophenyl alkanes, nitroalkanes, and ketones employing cobalt. The reaction allows for the formation of various substituted allylated products in moderate‐excellent yields with a broad scope. Additionally, the synthetic potential of the methodology is demonstrated by the transformation of products into versatile heterocyclic motifs. Mechanistic studies revealed an in situ activation of the Co(II)/dppBz precatalyst by the carboxylate salt to generate a Co(I)‐species, which is presumed to be the active catalyst. 
    more » « less