Current commercial batteries are mainly metal based, with metal elements in charge carriers and/or electrode materials, which poses potential economic and environmental concerns due to the heavy use of nonrenewable metals. Thus, metal-free batteries present a unique opportunity as sustainable energy storage devices, though the relevant research is still in its infancy. Herein, we present an all-organic metal-free NH 4 + ion full battery that can operate at a low temperature of 0 °C, by using polypyrrole (PPy) as the cathode, polyaniline (PANI) as the anode, and 19 m ammonium acetate aqueous solution as electrolyte. For the first time, PPy is demonstrated as a high-capacity host material for both NH 4 + and K + storage, when cycled in water in salt electrolytes (WiSEs). When tested in a three-electrode cell containing 25 m NH 4 CH 3 COO electrolyte, PPy exhibits an impressive capacity of 125 mA h g −1 at a specific current of 1 A g −1 and retains 43.61 mA h g −1 at 25 A g −1 . Additionally, a full battery is assembled using the PPy cathode and PANI anode coupled with 19 m NH 4 CH 3 COO WiSE. This battery is found to deliver a capacity of 78.405 mA h g −1 at 25 °C and 49.083 mA h g −1 at 0 °C with a capacity retention of 71.83% after 200 cycles, demonstrating its potential for operations at low temperatures. Additionally, the physiochemical properties of NH 4 + -based WiSEs are examined by Raman and nuclear magnetic resonance (NMR) spectroscopies, to explore their electrochemical behaviors and the fundamental effect of salt concentration on the electrolyte characteristics. This study presents the first non-metal battery with potential for low-temperature applications and opens the door to future metal-free electronics that would generate long-term benefits to the environment.
more »
« less
A Fast‐Charging and High‐Temperature All‐Organic Rechargeable Potassium Battery
Abstract Developing fast‐charging, high‐temperature, and sustainable batteries is critical for the large‐scale deployment of energy storage devices in electric vehicles, grid‐scale electrical energy storage, and high temperature regions. Here, a transition metal‐free all‐organic rechargeable potassium battery (RPB) based on abundant and sustainable organic electrode materials (OEMs) and potassium resources for fast‐charging and high‐temperature applications is demonstrated. N‐doped graphene and a 2.8 m potassium hexafluorophosphate (KPF6) in diethylene glycol dimethyl ether (DEGDME) electrolyte are employed to mitigate the dissolution of OEMs, enhance the electrode conductivity, accommodate large volume change, and form stable solid electrolyte interphase in the all‐organic RPB. At room temperature, the RPB delivers a high specific capacity of 188.1 mAh g−1at 50 mA g−1and superior cycle life of 6000 and 50000 cycles at 1 and 5 A g−1, respectively, demonstrating an ultra‐stable and fast‐charging all‐organic battery. The impressive performance at room temperature is extended to high temperatures, where the high‐mass‐loading (6.5 mg cm−2) all‐organic RPB exhibits high‐rate capability up to 2 A g−1and a long lifetime of 500 cycles at 70–100 °C, demonstrating a superb fast‐charging and high‐temperature battery. The cell configuration demonstrated in this work shows great promise for practical applications of sustainable batteries at extreme conditions.
more »
« less
- Award ID(s):
- 2142003
- PAR ID:
- 10378105
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Science
- Volume:
- 9
- Issue:
- 34
- ISSN:
- 2198-3844
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Redox‐active polymers (RAPs) are promising organic electrode materials for affordable and sustainable batteries due to their flexible chemical structures and negligible solubility in the electrolyte. Developing high‐dimensional RAPs with porous structures and crosslinkers can further improve their stability and redox capability by reducing the solubility and enhancing reaction kinetics. This work reports two three‐dimensional (3D) RAPs as stable organic cathodes in Na‐ion batteries (NIBs) and K‐ion batteries (KIBs). Carbonyl functional groups are incorporated into the repeating units of the RAPs by the polycondensation of Tetrakis(4‐aminophenyl)methane and two different dianhydrides. The RAPs with interconnected 3D extended conjugation structures undergo multi‐electron redox reactions and exhibit high performance in both NIBs and KIBs in terms of long cycle life (up to 8000 cycles) and fast charging capability (up to 2 A g−1). The results demonstrate that developing 3D RAPs is an effective strategy to achieve high‐performance, affordable, and sustainable NIBs and KIBs.more » « less
-
null (Ed.)A conjugated tetracarboxylate, 1,2,4,5-benzenetetracarboxylate sodium salt (Na 4 C 10 H 2 O 8 ), was designed and synthesized as an anode material in Na-ion batteries (NIBs). This organic compound shows low redox potentials (∼0.65 V), long cycle life (1000 cycles), and fast charging capability (up to 2 A g −1 ), demonstrating a promising organic anode for stable and sustainable NIBs.more » « less
-
Abstract Aqueous zinc‐ion batteries are promising alternatives to lithium‐ion batteries due to their cost‐effectiveness and improved safety. However, several challenges, including corrosion, dendrites, and water decomposition at the Zn anode, hinder their performance. Herein, an approach is proposed, that deviates from the conventional design by adding water into a propylene carbonate‐based organic electrolyte to prepare a non‐flammable “water‐in‐organic” electrolyte. The chaotropic salt Zn(ClO4)2exploits the Hofmeister effect to promote the miscibility of immiscible liquid phases. Interactions between propylene carbonate and water restrict water activity and mitigate unfavorable reactions. This electrolyte facilitates preferential Zn (002) deposition and the formation of solid electrolyte interphase. Consequently, the “water‐in‐organic” electrolyte achieves a 99.5% Coulombic efficiency at 1 mA cm−2over 1000 cycles in Zn/Cu cells, and constant cycling over 1000 h in Zn/Zn symmetric cells. A Na0.33V2O5/Zn battery exhibits impressive cycling stability with a capacity of 175 mAh g−1for 800 cycles at 2 A g−1. Additionally, this electrolyte enables sustainable cycling across a wide temperature range from −20 to 50 °C. The design of a “water‐in‐organic” electrolyte employing a chaotropic salt presents a potential strategy for high‐performance electrolytes in zinc‐ion batteries with a large stability window and a wide temperature range.more » « less
-
Beyond lithium-ion technologies, lithium−sulfur batteries stand out because of their multielectron redox reactions and high theoretical specific energy (2500 Wh kg−1). However, the intrinsic irreversible transformation of soluble lithium polysulfides to solid short-chain sulfur species (Li2S2 and Li2S) and the associated large volume change of electrode materials significantly impair the long-term stability of the battery. Here we present a liquid sulfur electrode consisting of lithium thiophosphate complexes dissolved in organic solvents that enable the bonding and storage of discharge reaction products without precipitation. Insights garnered from coupled spectroscopic and density functional theory studies guide the complex molecular design, complexation mechanism, and associated electrochemical reaction mechanism. With the novel complexes as cathode materials, high specific capacity (1425 mAh g−1 at 0.2 C) and excellent cycling stability (80% retention after 400 cycles at 0.5 C) are achieved at room temperature. Moreover, the highly reversible all-liquid electrochemical conversion enables excellent low temperature battery operability (>400 mAh g−1 at −40 °C and >200 mAh g−1 at −60 °C). This work opens new avenues to design and tailor the sulfur electrode for enhanced electrochemical performance across a wide operating temperature range.more » « less
An official website of the United States government
