- PAR ID:
- 10436263
- Date Published:
- Journal Name:
- Nanoscale
- Volume:
- 15
- Issue:
- 2
- ISSN:
- 2040-3364
- Page Range / eLocation ID:
- 562 to 572
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Over the last decade, DNA origami has matured into one of the most powerful bottom-up nanofabrication techniques. It enables both the fabrication of nanoparticles of arbitrary two-dimensional or three-dimensional shapes, and the spatial organization of any DNA-linked nanomaterial, such as carbon nanotubes, quantum dots, or proteins at ∼5-nm resolution. While widely used within the DNA nanotechnology community, DNA origami has yet to be broadly applied in materials science and device physics, which now rely primarily on top-down nanofabrication. In this article, we first introduce DNA origami as a modular breadboard for nanomaterials and then present a brief survey of recent results demonstrating the unique capabilities created by the combination of DNA origami with existing top-down techniques. Emphasis is given to the open challenges associated with each method, and we suggest potential next steps drawing inspiration from recent work in materials science and device physics. Finally, we discuss some near-term applications made possible by the marriage of DNA origami and top-down nanofabrication.more » « less
-
DNA origami is a DNA‐based nanotechnology that utilizes programmed combinations of short complementary oligonucleotides to fold a large single strand of DNA into precise 2D and 3D shapes. The exquisite nanoscale shape control of this inherently biocompatible material is combined with the potential to spatially address the origami structures with diverse cargoes including drugs, antibodies, nucleic acid sequences, small molecules, and inorganic particles. This programmable flexibility enables the fabrication of precise nanoscale devices that have already shown great potential for biomedical applications such as: drug delivery, biosensing, and synthetic nanopore formation. Here, the advances in the DNA‐origami field since its inception several years ago are reviewed with a focus on how these DNA‐nanodevices can be designed to interact with cells to direct or probe their behavior.
-
Abstract Shape-morphing capabilities are crucial for enabling multifunctionality in both biological and artificial systems. Various strategies for shape morphing have been proposed for applications in metamaterials and robotics. However, few of these approaches have achieved the ability to seamlessly transform into a multitude of volumetric shapes post-fabrication using a relatively simple actuation and control mechanism. Taking inspiration from thick origami and hierarchies in nature, we present a hierarchical construction method based on polyhedrons to create an extensive library of compact origami metastructures. We show that a single hierarchical origami structure can autonomously adapt to over 103versatile architectural configurations, achieved with the utilization of fewer than 3 actuation degrees of freedom and employing simple transition kinematics. We uncover the fundamental principles governing theses shape transformation through theoretical models. Furthermore, we also demonstrate the wide-ranging potential applications of these transformable hierarchical structures. These include their uses as untethered and autonomous robotic transformers capable of various gait-shifting and multidirectional locomotion, as well as rapidly self-deployable and self-reconfigurable architecture, exemplifying its scalability up to the meter scale. Lastly, we introduce the concept of multitask reconfigurable and deployable space robots and habitats, showcasing the adaptability and versatility of these metastructures.
-
Abstract Significant progress in DNA nanotechnology has accelerated the development of molecular machines with functions like macroscale machines. However, the mobility of DNA self‐assembled nanorobots is still dramatically limited due to challenges with designing and controlling nanoscale systems with many degrees of freedom. Here, an origami‐inspired method to design transformable DNA nanomachines is presented. This approach integrates stiff panels formed by bundles of double‐stranded DNA connected with foldable creases formed by single‐stranded DNA. To demonstrate the method, a DNA version of the paper origami mechanism called a waterbomb base (WBB) consisting of six panels connected by six joints is constructed. This nanoscale WBB can follow four distinct motion paths to transform between five distinct configurations including a flat square, two triangles, a rectangle, and a fully compacted trapezoidal shape. To achieve this, the sequence specificity of DNA base‐pairing is leveraged for the selective actuation of joints and the ion‐sensitivity of base‐stacking interactions is employed for the flattening of joints. In addition, higher‐order assembly of DNA WBBs into reconfigurable arrays is achieved. This work establishes a foundation for origami‐inspired design for next generation synthetic molecular robots and reconfigurable nanomaterials enabling more complex and controllable motion.
-
Origami folding and thin structure buckling are intensively studied for structural transformations with large packing ratio for various biomedical, robotic, and aerospace applications. The folding of circular rings has shown bistable snap‐through deformation under simple twisting motion and demonstrates a large area change to 11% of its undeformed configuration. Motivated by the large area change and the self‐guided deformation through snap‐folding, it is intended to design ring origami assemblies with unprecedented packing ratios. Herein, through finite‐element analysis, snap‐folding behaviors of single ring with different geometries (circular, elliptical, rounded rectangular, and rounded triangular shapes) are studied for ring origami assemblies for functional foldable structures. Geometric parameters' effects on the foldability, stability, and the packing ratio are investigated and are validated experimentally. With different rings as basic building blocks, the folding of ring origami assemblies including linear‐patterned rounded rectangular rings, radial‐patterned elliptical rings, and 3D crossing circular rings is further experimentally demonstrated, which show significant packing ratios of 7% and 2.5% of the initial areas, and 0.3% of the initial volume, respectively. It is envisioned that the reported snap‐folding of origami rings will provide alternative strategies to design foldable/deployable structures and devices with reliable self‐guided deformation and large area change.