skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Session-based News Recommendation from Temporal User Commenting Dynamics
With the increase in volume of daily online news items, it is more and more difficult for readers to identify news articles relevant to their interests. Thus, effective recommendation systems are critical for an effective user news consumption experience. Existing news recommendation methods usually rely on the news click history to model user interest. However, there are other signals about user behaviors, such as user commenting activity, which have not been used before. We propose a recommendation algorithm that predicts articles a user may be interested in, given her historical sequential commenting behavior on news articles. We show that following this sequential user behavior the news recommendation problem falls into in the class of session-based recommendation. The techniques in this class seek to model users' sequential and temporal behaviors. While we seek to follow the general directions in this space, we face unique challenges specific to news in modeling temporal dynamics, e.g., users' interests shift over time, users comment irregularly on articles, and articles are perishable items with limited lifespans. We propose a recency-regularized neural attentive framework for session-based news recommendation. The proposed method is able to capture the temporal dynamics of both users and news articles, while maintaining interpretability. We design a lag-aware attention and a recency regularization to model the time effect of news articles and comments. We conduct extensive empirical studies on 3 real-world news datasets to demonstrate the effectiveness of our method.  more » « less
Award ID(s):
1838145
PAR ID:
10378398
Author(s) / Creator(s):
Date Published:
Journal Name:
The international conference series on Advances in Social Network Analysis and Mining (ASONAM)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The Web has become the main source for news acquisition. At the same time, news discussion has become more social: users can post comments on news articles or discuss news articles on other platforms like Reddit. These features empower and enable discussions among the users; however, they also act as the medium for the dissemination of toxic discourse and hate speech. The research community lacks a general understanding on what type of content attracts hateful discourse and the possible effects of social networks on the commenting activity on news articles. In this work, we perform a large-scale quantitative analysis of 125M comments posted on 412K news articles over the course of 19 months. We analyze the content of the collected articles and their comments using temporal analysis, user-based analysis, and linguistic analysis, to shed light on what elements attract hateful comments on news articles. We also investigate commenting activity when an article is posted on either 4chan’s Politically Incorrect board (/pol/) or six selected subreddits. We find statistically significant increases in hateful commenting activity around real-world divisive events like the “Unite the Right” rally in Charlottesville and political events like the second and third 2016 US presidential debates. Also, we find that articles that attract a substantial number of hateful comments have different linguistic characteristics when compared to articles that do not attract hateful comments. Furthermore, we observe that the post of a news articles on either /pol/ or the six subreddits is correlated with an increase of (hateful) commenting activity on the news articles. 
    more » « less
  2. In this work, we propose to improve long-term user engagement in a recommender system from the perspective of sequential decision optimization, where users' click and return behaviors are directly modeled for online optimization. A bandit-based solution is formulated to balance three competing factors during online learning, including exploitation for immediate click, exploitation for expected future clicks, and exploration of unknowns for model estimation. We rigorously prove that with a high probability our proposed solution achieves a sublinear upper regret bound in maximizing cumulative clicks from a population of users in a given period of time, while a linear regret is inevitable if a user's temporal return behavior is not considered when making the recommendations. Extensive experimentation on both simulations and a large-scale real-world dataset collected from Yahoo frontpage news recommendation log verified the effectiveness and significant improvement of our proposed algorithm compared with several state-of-the-art online learning baselines for recommendation. 
    more » « less
  3. User preferences are usually dynamic in real-world recommender systems, and a user’s historical behavior records may not be equally important when predicting his/her future interests. Existing recommendation algorithms – including both shallow and deep approaches – usually embed a user’s historical records into a single latent vector/representation, which may have lost the per item- or feature-level correlations between a user’s historical records and future interests. In this paper, we aim to express, store, and manipulate users’ historical records in a more explicit, dynamic, and effective manner. To do so, we introduce the memory mechanism to recommender systems. Specifically, we design a memory-augmented neural network (MANN) integrated with the insights of collaborative filtering for recommendation. By leveraging the external memory matrix in MANN, we store and update users’ historical records explicitly, which enhances the expressiveness of the model. We further adapt our framework to both item- and feature-level versions, and design the corresponding memory reading/writing operations according to the nature of personalized recommendation scenarios. Compared with state-of-the-art methods that consider users’ sequential behavior for recommendation, e.g., sequential recommenders with recurrent neural networks (RNN) or Markov chains, our method achieves significantly and consistently better performance on four real-world datasets. Moreover, experimental analyses show that our method is able to extract the intuitive patterns of how users’ future actions are affected by previous behaviors. 
    more » « less
  4. Many news outlets allow users to contribute comments on topics about daily world events. News articles are the seeds that spring users' interest to contribute content, that is, comments. A news outlet may allow users to contribute comments on all their articles or a selected number of them. The topic of an article may lead to an apathetic user commenting activity (several tens of comments) or to a spontaneous fervent one (several thousands of comments). This environment creates a social dynamic that is little studied. The social dynamics around articles have the potential to reveal interesting facets of the user population at a news outlet. In this paper, we report the salient findings about these social media from 15 months worth of data collected from 17 news outlets comprising of over 38,000 news articles and about 21 million user comments. Analysis of the data reveals interesting insights such as there is an uneven relationship between news outlets and their user populations across outlets. Such observations and others have not been revealed, to our knowledge. We believe our analysis in this paper can contribute to news predictive analytics (e.g., user reaction to a news article or predicting the volume of comments posted to an article). 
    more » « less
  5. Abstract Many news outlets allow users to contribute comments on topics about daily world events. News articles are the seeds that spring users' interest to contribute content, that is, comments. A news outlet may allow users to contribute comments on all their articles or a selected number of them. The topic of an article may lead to an apathetic user commenting activity (several tens of comments) or to a spontaneous fervent one (several thousands of comments). This environment creates a social dynamic that is little studied. The social dynamics around articles have the potential to reveal interesting facets of the user population at a news outlet. In this paper, we report the salient findings about these social media from 15 months worth of data collected from 17 news outlets comprising of over 38,000 news articles and about 21 million user comments. Analysis of the data reveals interesting insights such as there is an uneven relationship between news outlets and their user populations across outlets. Such observations and others have not been revealed, to our knowledge. We believe our analysis in this paper can contribute to news predictive analytics (e.g., user reaction to a news article or predicting the volume of comments posted to an article). This article is categorized under:Internet > Society and CultureEnsemble Methods > Web MiningFundamental Concepts of Data and Knowledge > Human Centricity and User Interaction 
    more » « less