With the increase in volume of daily online news items, it is more and more difficult for readers to identify news articles relevant to their interests. Thus, effective recommendation systems are critical for an effective user news consumption experience. Existing news recommendation methods usually rely on the news click history to model user interest. However, there are other signals about user behaviors, such as user commenting activity, which have not been used before. We propose a recommendation algorithm that predicts articles a user may be interested in, given her historical sequential commenting behavior on news articles. We show that following this sequential user behavior the news recommendation problem falls into in the class of session-based recommendation. The techniques in this class seek to model users' sequential and temporal behaviors. While we seek to follow the general directions in this space, we face unique challenges specific to news in modeling temporal dynamics, e.g., users' interests shift over time, users comment irregularly on articles, and articles are perishable items with limited lifespans. We propose a recency-regularized neural attentive framework for session-based news recommendation. The proposed method is able to capture the temporal dynamics of both users and news articles, while maintaining interpretability. We design a lag-aware attention and a recency regularization to model the time effect of news articles and comments. We conduct extensive empirical studies on 3 real-world news datasets to demonstrate the effectiveness of our method.
more »
« less
Sequential Recommendation with User Memory Networks
User preferences are usually dynamic in real-world recommender systems, and a user’s historical behavior records may not be equally important when predicting his/her future interests. Existing recommendation algorithms – including both shallow and deep approaches – usually embed a user’s historical records into a single latent vector/representation, which may have lost the per item- or feature-level correlations between a user’s historical records and future interests. In this paper, we aim to express, store, and manipulate users’ historical records in a more explicit, dynamic, and effective manner. To do so, we introduce the memory mechanism to recommender systems. Specifically, we design a memory-augmented neural network (MANN) integrated with the insights of collaborative filtering for recommendation. By leveraging the external memory matrix in MANN, we store and update users’ historical records explicitly, which enhances the expressiveness of the model. We further adapt our framework to both item- and feature-level versions, and design the corresponding memory reading/writing operations according to the nature of personalized recommendation scenarios. Compared with state-of-the-art methods that consider users’ sequential behavior for recommendation, e.g., sequential recommenders with recurrent neural networks (RNN) or Markov chains, our method achieves significantly and consistently better performance on four real-world datasets. Moreover, experimental analyses show that our method is able to extract the intuitive patterns of how users’ future actions are affected by previous behaviors.
more »
« less
- Award ID(s):
- 1745382
- PAR ID:
- 10190739
- Date Published:
- Journal Name:
- Web Search and Data Mining
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)The success of cross-domain recommender systems in capturing user interests across multiple domains has recently brought much attention to them. These recommender systems aim to improve the quality of suggestions and defy the cold-start problem by transferring information from one (or more) source domain(s) to a target domain. However, most cross-domain recommenders ignore the sequential information in user history. They only rely on an aggregate or snapshot of user feedback in the past. Most importantly, they do not explicitly model how users transition from one domain to another domain as users continue to interact with different item domains. In this paper, we argue that between-domain transitions in user sequences are useful in improving recommendation quality, dealing with the cold-start problem, and revealing interesting aspects of how user interests transform from one domain to another. We propose TransCrossCF, transition-based cross-domain collaborative filtering, that can capture both within and between domain transitions of user feedback sequences while understanding the relationship between different item types in different domains. Specifically, we model each purchase of a user as a transition from his/her previous item to the next one, under the effect of item domains and user preferences. Our intensive experiments demonstrate that TransCrossCF outperforms the state-of-the-art methods in recommendation task on three real-world datasets, both in the cold-start and hot-start scenarios. Moreover, according to our context analysis evaluations, the between-domain relations captured by TransCrossCF are interpretable and intuitive.more » « less
-
Social recommendation task aims to predict users' preferences over items with the incorporation of social connections among users, so as to alleviate the sparse issue of collaborative filtering. While many recent efforts show the effectiveness of neural network-based social recommender systems, several important challenges have not been well addressed yet: (i) The majority of models only consider users’ social connections, while ignoring the inter-dependent knowledge across items; (ii) Most of existing solutions are designed for singular type of user-item interactions, making them infeasible to capture the interaction heterogeneity; (iii) The dynamic nature of user-item interactions has been less explored in many social-aware recommendation techniques. To tackle the above challenges, this work proposes a Knowledge-aware Coupled Graph Neural Network (KCGN) that jointly injects the inter-dependent knowledge across items and users into the recommendation framework. KCGN enables the high-order user- and item-wise relation encoding by exploiting the mutual information for global graph structure awareness. Additionally, we further augment KCGN with the capability of capturing dynamic multi-typed user-item interactive patterns. Experimental studies on real-world datasets show the effectiveness of our method against many strong baselines in a variety of settings. Source codes are available at: https://github.com/xhcdream/KCGN.more » « less
-
null (Ed.)Sequential recommendation is the task of predicting the next items for users based on their interaction history. Modeling the dependence of the next action on the past actions accurately is crucial to this problem. Moreover, sequential recommendation often faces serious sparsity of item-to-item transitions in a user's action sequence, which limits the practical utility of such solutions. To tackle these challenges, we propose a Category-aware Collaborative Sequential Recommender. Our preliminary statistical tests demonstrate that the in-category item-to-item transitions are often much stronger indicators of the next items than the general item-to-item transitions observed in the original sequence. Our method makes use of item category in two ways. First, the recommender utilizes item category to organize a user's own actions to enhance dependency modeling based on her own past actions. It utilizes self-attention to capture in-category transition patterns, and determines which of the in-category transition patterns to consider based on the categories of recent actions. Second, the recommender utilizes the item category to retrieve users with similar in-category preferences to enhance collaborative learning across users, and thus conquer sparsity. It utilizes attention to incorporate in-category transition patterns from the retrieved users for the target user. Extensive experiments on two large datasets prove the effectiveness of our solution against an extensive list of state-of-the-art sequential recommendation models.more » « less
-
In sequential recommender system applications, it is important to develop models that can capture users' evolving interest over time to successfully recommend future items that they are likely to interact with. For users with long histories, typical models based on recurrent neural networks tend to forget important items in the distant past. Recent works have shown that storing a small sketch of past items can improve sequential recommendation tasks. However, these works all rely on static sketching policies, i.e., heuristics to select items to keep in the sketch, which are not necessarily optimal and cannot improve over time with more training data. In this paper, we propose a differentiable policy for sketching (DiPS), a framework that learns a data-driven sketching policy in an end-to-end manner together with the recommender system model to explicitly maximize recommendation quality in the future. We also propose an approximate estimator of the gradient for optimizing the sketching algorithm parameters that is computationally efficient. We verify the effectiveness of DiPS on real-world datasets under various practical settings and show that it requires up to 50% fewer sketch items to reach the same predictive quality than existing sketching policies.more » « less