Dynamic bonds introduce unique properties such as self‐healing, recyclability, shape memory, and malleability to polymers. Significant efforts have been made to synthesize a variety of dynamic linkers, creating a diverse library of materials. In addition to the development of new dynamic chemistries, fine‐tuning of dynamic bonds has emerged as a technique to modulate dynamic properties. This Review highlights approaches for controlling the timescales of dynamic bonds in polymers. Particularly, eight dynamic bonds are considered, including urea/urethanes, boronic esters, Thiol–Michael exchange, Diels–Alder adducts, transesterification, imine bonds, coordination bonds, and hydrogen bonding. This Review emphasizes how structural modifications and external factors have been used as tools to tune the dynamic character of materials. Finally, this Review proposes strategies for tailoring the timescales of dynamic bonds in polymer materials through both kinetic effects and modulating bond thermodynamics.
Dynamic bonds introduce unique properties such as self‐healing, recyclability, shape memory, and malleability to polymers. Significant efforts have been made to synthesize a variety of dynamic linkers, creating a diverse library of materials. In addition to the development of new dynamic chemistries, fine‐tuning of dynamic bonds has emerged as a technique to modulate dynamic properties. This Review highlights approaches for controlling the timescales of dynamic bonds in polymers. Particularly, eight dynamic bonds are considered, including urea/urethanes, boronic esters, Thiol–Michael exchange, Diels–Alder adducts, transesterification, imine bonds, coordination bonds, and hydrogen bonding. This Review emphasizes how structural modifications and external factors have been used as tools to tune the dynamic character of materials. Finally, this Review proposes strategies for tailoring the timescales of dynamic bonds in polymer materials through both kinetic effects and modulating bond thermodynamics.
more » « less- Award ID(s):
- 1749730
- NSF-PAR ID:
- 10378480
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Angewandte Chemie International Edition
- Volume:
- 61
- Issue:
- 50
- ISSN:
- 1433-7851
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Inspired by protein polymerizations, much progress has been made in making “polymer‐like” supramolecular structures from small synthetic subunits through non‐covalent bonds. A few regulation mechanisms have also been explored in synthetic platforms to create supramolecular polymers and materials with dynamic properties. Herein, a type of reactive regulator that facilitates the dimerization of the monomer precursors through dynamic bonds to trigger the supramolecular assembly from small molecules in an aqueous solution is described. The supramolecular structures are crystalline in nature and the reaction coupled assembly strategy can be extended to a supramolecular assembly of aromatic amide derivatives formed in‐situ. The method may be instructive for the development of supramolecular nanocrystalline materials with desired physical properties.
-
Abstract Dynamic materials (DMs) or dynamers have potential applications across a broad range of material science challenges. These applications include sustainable materials as a part of the circular plastics economy, advanced materials with tailored high stress properties and biomedical agents. DMs are comprised of polymers that crosslinked through reversible covalent and noncovalent linking groups. This group provides reversible bonds, which impart properties such as (re)healing, adaptability, toughness into a material. The nature of the linker dictates the dynamer's stability and dynamic properties, although for many applications one linker alone cannot give materials with complex multiresponsive functions. The combination of multiple dynamic linkers can introduce complementary functionalities into a single material. This combination of linkers enhances the collective material properties by matching their strengths and offsetting the weaknesses, or by selecting linkers for specific functions, such as one linker for rapid exchange and the other to respond to external stimuli. This contribution highlights the possibilities and unique features of materials containing multiple dynamic linkers, reviewing both fundamental discoveries of materials possessing multiple dynamic bonds and applications facilitated by the presence of multiple linking group chemistry.
-
Abstract Shape memory materials have emerged as an important class of materials in medicine due to their ability to change shape in response to a specific stimulus, enabling the simplification of medical procedures, use of minimally invasive techniques, and access to new treatment modalities. Shape memory polymers, in particular, are well suited for such applications given their excellent shape memory performance, tunable materials properties, minimal toxicity, and potential for biodegradation and resorption. This review provides an overview of biodegradable shape memory polymers that have been used in medical applications. The majority of biodegradable shape memory polymers are based on thermally responsive polyesters or polymers that contain hydrolyzable ester linkages. These materials have been targeted for use in applications pertaining to embolization, drug delivery, stents, tissue engineering, and wound closure. The development of biodegradable shape memory polymers with unique properties or responsiveness to novel stimuli has the potential to facilitate the optimization and development of new medical applications.
-
The need to minimize the amount of polymeric waste entering landfills and oceans has led to several research avenues in the field of polymer science. Particularly, the development of intrinsically self-healing and reprocessable thermoset polymers containing dynamic crosslinks has garnered significant interest in the recent years. Reversible B–O bonds in certain orgonoboron compounds have shown great versatility and promise as dynamic crosslinks for the design of self-healing and reprocessable bulk polymer networks. This review provides an overview of the chemistry of organoboron species with dynamic B–O bonds amenable to the design of healable/reprocessable thermosets. Recent developments in this fairly young and interesting research topic are highlighted, along with a critical commentary on the scope and future challenges in designing robust dynamic materials with reversible B–O bonds.more » « less