skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Ionization and Star Formation in the Giant H ii Region SMC-N66
Abstract The NGC 346 young stellar system and associated N66 giant H ii region in the Small Magellanic Cloud are the nearest example of a massive star-forming event in a low metallicity ( Z ≈ 0.2 Z ⊙ ) galaxy. With an age of ≲3 Myr this system provides a unique opportunity to study relationships between massive stars and their associated H ii region. Using archival data, we derive a total H α luminosity of L (H α ) = 4.1 × 10 38 erg s −1 corresponding to an H-photoionization rate of 3 × 10 50 s −1 . A comparison with a predicted stellar ionization rate derived from the more than 50 known O-stars in NGC 346, including massive stars recently classified from Hubble Space Telescope far-ultraviolet (FUV) spectra, indicates an approximate ionization balance. Spectra obtained with SALT suggest the ionization structure of N66 could be consistent with some leakage of ionizing photons. Due to the low metallicity, the FUV luminosity from NGC 346 is not confined to the interstellar cloud associated with N66. Ionization extends through much of the spatial extent of the N66 cloud complex, and most of the cloud mass is not ionized. The stellar mass estimated from nebular L (H α ) appears to be lower than masses derived from the census of resolved stars which may indicate a disconnect between the formation of high and low mass stars in this region. We briefly discuss implications of the properties of N66 for studies of star formation and stellar feedback in low metallicity environments.  more » « less
Award ID(s):
1852136
PAR ID:
10378635
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Publications of the Astronomical Society of the Pacific
Volume:
134
Issue:
1036
ISSN:
0004-6280
Page Range / eLocation ID:
064301
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract NGC 602 is a young, low-metallicity star cluster in the “Wing” of the Small Magellanic Cloud. We reveal the recent evolutionary past of the cluster through analysis of high-resolution (∼0.4 pc) Atacama Large Millimeter/submillimeter Array observations of molecular gas in the associated H ii region N90. We identify 110 molecular clumps ( R < 0.8 pc) traced by CO emission, and study the relationship between the clumps and associated young stellar objects (YSOs) and pre-main-sequence (PMS) stars. The clumps have high virial parameters (typical α vir = 4–11) and may retain signatures of a collision in the last ≲8 Myr between H i components of the adjacent supergiant shell SMC-SGS 1. We obtain a CO-bright-to-H 2 gas conversion factor of X CO, B = (3.4 ± 0.2) × 10 20 cm −2 (K km s −1 ) −1 , and correct observed clump properties for CO-dark H 2 gas to derive a total molecular gas mass in N90 of 16,600 ± 2400 M ⊙ . We derive a recent (≲1 Myr) star formation rate of 130 ± 30 M ⊙ Myr −1 with an efficiency of 8% ± 3% assessed through comparing total YSO mass to total molecular gas mass. Very few significant radial trends exist between clump properties or PMS star ages and distance from NGC 602. We do not find evidence for a triggered star formation scenario among the youngest (≲2 Myr) stellar generations, and instead conclude that a sequential star formation process in which NGC 602 did not directly cause recent star formation in the region is likely. 
    more » « less
  2. ABSTRACT We present results from the NIRVANDELS survey on the gas-phase metallicity (Zg, tracing O/H) and stellar metallicity (Z⋆, tracing Fe/H) of 33 star-forming galaxies at redshifts 2.95 < z < 3.80. Based on a combined analysis of deep optical and near-IR spectra, tracing the rest-frame far-ultraviolet (FUV; 1200–2000 Å) and rest-frame optical (3400–5500 Å), respectively, we present the first simultaneous determination of the stellar and gas-phase mass–metallicity relationships (MZRs) at z ≃ 3.4. In both cases, we find that metallicity increases with increasing stellar mass (M⋆) and that the power-law slope at M⋆ ≲ 1010M⊙ of both MZRs scales as $$Z \propto M_{\star }^{0.3}$$. Comparing the stellar and gas-phase MZRs, we present direct evidence for super-solar O/Fe ratios (i.e. α-enhancement) at z > 3, finding (O/Fe) = 2.54 ± 0.38 × (O/Fe)⊙, with no clear dependence on M⋆. 
    more » « less
  3. Abstract Studies of the resolved stellar populations of young massive clusters have shown that the slope of the initial mass function (IMF) appears to be the same everywhere, with no dependence on stellar density or metallicity. At the same time, studies of integrated properties of galaxies usually conclude that the IMF does vary and must be top-heavy in starburst regions. In order to investigate this, we have carried out a long-term project to characterize the massive-star content of NGC 3603, the nearest giant Hiiregion, known to have a rich population of massive stars. We used both ground-based and Hubble Space Telescope (HST) imaging to obtain photometry, and we employed Gaia to establish membership. We obtained spectra of 128 stars using the Magellan 6.5 m telescope and HST, and we combine these data to produce a reddening map. After analyzing the data in the same way as we have for 25 other star-forming regions in the Milky Way and the Magellanic Clouds, we find that the IMF slope of NGC 3603 is quite normal compared to other clusters, with Γ = −0.9 ± 0.1. If anything, there are fewer very high mass (>65M) stars than one would expect by extrapolation from lower masses. This slope is also indistinguishable from what several studies have shown for R136 in the LMC, an even richer region. We speculate that the depreciation of the highest-mass bins in NGC 3603, but not in R136, may indicate that it is harder to form extremely massive stars at the higher metallicity of the Milky Way compared to that of the LMC. 
    more » « less
  4. The chemical composition of galaxies has been measured out to z∼4. However, nearly all studies beyond z∼0.7 are based on strong-line emission from HII regions within star-forming galaxies. Measuring the chemical composition of distant quiescent galaxies is extremely challenging, as the required stellar absorption features are faint and shifted to near-infrared wavelengths. Here, we present ultradeep rest-frame optical spectra of five massive quiescent galaxies at z∼1.4, all of which show numerous stellar absorption lines. We derive the abundance ratios [Mg/Fe] and [Fe/H] for three out of five galaxies; the remaining two galaxies have too young luminosity-weighted ages to yield robust measurements. Similar to lower-redshift findings, [Mg/Fe] appears positively correlated with stellar mass, while [Fe/H] is approximately constant with mass. These results may imply that the stellar mass–metallicity relation was already in place at z∼1.4. While the [Mg/Fe]−mass relation at z∼1.4 is consistent with the z<0.7 relation, [Fe/H] at z∼1.4 is ∼0.2 dex lower than at z<0.7. With a [Mg/Fe] of 0.44+0.08 the most -0.07 massive galaxy may be more α-enhanced than similar-mass galaxies at lower redshift, but the offset is less significant than the [Mg/Fe] of 0.6 previously found for a massive galaxy at z=2.1. Nonetheless, these results combined may suggest that [Mg/Fe] in the most massive galaxies decreases over time, possibly by accreting low- mass, less α-enhanced galaxies. A larger galaxy sample is needed to confirm this scenario. Finally, the abundance ratios indicate short star formation timescales of 0.2–1.0 Gyr. 
    more » « less
  5. Abstract As a part of the Deciphering the Interplay between the Interstellar medium, Stars, and the Circumgalactic medium (DIISC) survey, we investigate indirect evidence of gas inflow into the disk of the galaxyNGC 99. We combine optical spectra from the Binospec spectrograph on the MMT telescope with optical imaging data from the Vatican Advanced Technology Telescope, radio Hi21 cm emission images from the NSF Karl G. Jansky’s Very Large Array, and UV spectroscopy from the Cosmic Origins Spectrograph on the Hubble Space Telescope. We measure emission lines (Hα, Hβ, [Oiii]λ5007, [Nii]λ6583, and [Sii]λ6717, 31) in 26 Hiiregions scattered about the galaxy and estimate a radial metallicity gradient of −0.017 dex kpc−1using the N2 metallicity indicator. Two regions in the sample exhibit an anomalously low metallicity (ALM) of 12 + log(O/H) = 8.36 dex, which is ∼0.16 dex lower than other regions at that galactocentric radius. They also show a high difference between their Hiand Hαline of sight velocities on the order of 35 km s−1. Chemical evolution modeling indicates gas accretion as the cause of the ALM regions. We find evidence for corotation between the interstellar medium ofNGC 99and Lyαclouds in its circumgalactic medium, which suggests a possible pathway for low metallicity gas accretion. We also calculate the resolved Fundamental Metallicity Relation (rFMR) on subkiloparsec scales using localized gas-phase metallicity, stellar mass surface density, and star formation rate surface density. The rFMR shows a similar trend as that found by previous localized and global FMR relations. 
    more » « less