ABSTRACT One of the key mysteries of star formation is the origin of the stellar initial mass function (IMF). The IMF is observed to be nearly universal in the Milky Way and its satellites, and significant variations are only inferred in extreme environments, such as the cores of massive elliptical galaxies and the Central Molecular Zone. In this work, we present simulations from the STARFORGE project that are the first cloud-scale radiation-magnetohydrodynamic simulations that follow individual stars and include all relevant physical processes. The simulations include detailed gas thermodynamics, as well as stellar feedback in the form of protostellar jets, stellar radiation, winds, and supernovae. In this work, we focus on how stellar radiation, winds, and supernovae impact star-forming clouds. Radiative feedback plays a major role in quenching star formation and disrupting the cloud; however, the IMF peak is predominantly set by protostellar jet physics. We find that the effect of stellar winds is minor, and supernovae ‘occur too late’ to affect the IMF or quench star formation. We also investigate the effects of initial conditions on the IMF. We find that the IMF is insensitive to the initial turbulence, cloud mass, and cloud surface density, even though these parameters significantly shape the star formation history of the cloud, including the final star formation efficiency. Meanwhile, the characteristic stellar mass depends weakly on metallicity and the interstellar radiation field, which essentially set the average gas temperature. Finally, while turbulent driving and the level of magnetization strongly influence the star formation history, they only influence the high-mass slope of the IMF.
more »
« less
This content will become publicly available on November 25, 2026
The Stellar Content of NGC 3603 Revisited: Is the IMF Top Heavy? ∗
Abstract Studies of the resolved stellar populations of young massive clusters have shown that the slope of the initial mass function (IMF) appears to be the same everywhere, with no dependence on stellar density or metallicity. At the same time, studies of integrated properties of galaxies usually conclude that the IMF does vary and must be top-heavy in starburst regions. In order to investigate this, we have carried out a long-term project to characterize the massive-star content of NGC 3603, the nearest giant Hiiregion, known to have a rich population of massive stars. We used both ground-based and Hubble Space Telescope (HST) imaging to obtain photometry, and we employed Gaia to establish membership. We obtained spectra of 128 stars using the Magellan 6.5 m telescope and HST, and we combine these data to produce a reddening map. After analyzing the data in the same way as we have for 25 other star-forming regions in the Milky Way and the Magellanic Clouds, we find that the IMF slope of NGC 3603 is quite normal compared to other clusters, with Γ = −0.9 ± 0.1. If anything, there are fewer very high mass (>65M⊙) stars than one would expect by extrapolation from lower masses. This slope is also indistinguishable from what several studies have shown for R136 in the LMC, an even richer region. We speculate that the depreciation of the highest-mass bins in NGC 3603, but not in R136, may indicate that it is harder to form extremely massive stars at the higher metallicity of the Milky Way compared to that of the LMC.
more »
« less
- PAR ID:
- 10655036
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 994
- Issue:
- 2
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 176
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The NGC 346 young stellar system and associated N66 giant H ii region in the Small Magellanic Cloud are the nearest example of a massive star-forming event in a low metallicity ( Z ≈ 0.2 Z ⊙ ) galaxy. With an age of ≲3 Myr this system provides a unique opportunity to study relationships between massive stars and their associated H ii region. Using archival data, we derive a total H α luminosity of L (H α ) = 4.1 × 10 38 erg s −1 corresponding to an H-photoionization rate of 3 × 10 50 s −1 . A comparison with a predicted stellar ionization rate derived from the more than 50 known O-stars in NGC 346, including massive stars recently classified from Hubble Space Telescope far-ultraviolet (FUV) spectra, indicates an approximate ionization balance. Spectra obtained with SALT suggest the ionization structure of N66 could be consistent with some leakage of ionizing photons. Due to the low metallicity, the FUV luminosity from NGC 346 is not confined to the interstellar cloud associated with N66. Ionization extends through much of the spatial extent of the N66 cloud complex, and most of the cloud mass is not ionized. The stellar mass estimated from nebular L (H α ) appears to be lower than masses derived from the census of resolved stars which may indicate a disconnect between the formation of high and low mass stars in this region. We briefly discuss implications of the properties of N66 for studies of star formation and stellar feedback in low metallicity environments.more » « less
-
Abstract We use 0.1″ observations from the Atacama Large Millimeter Array (ALMA), Hubble Space Telescope (HST), and JWST to study young massive clusters (YMCs) in their embedded “infant” phase across the central starburst ring in NGC 3351. Our new ALMA data reveal 18 bright and compact (sub-)millimeter continuum sources, of which 8 have counterparts in JWST images and only 6 have counterparts in HST images. Based on the ALMA continuum and molecular line data, as well as ancillary measurements for the HST and JWST counterparts, we identify 14 sources as infant star clusters with high stellar and/or gas masses (∼105M⊙), small radii (≲ 5 pc), large escape velocities (6–10 km s−1), and short freefall times (0.5–1 Myr). Their multiwavelength properties motivate us to divide them into four categories, likely corresponding to four evolutionary stages from starless clumps to exposed Hiiregion–cluster complexes. Leveraging age estimates for HST-identified clusters in the same region, we infer an evolutionary timeline, ranging from ∼1–2 Myr before cluster formation as starless clumps, to ∼4–6 Myr after as exposed Hiiregion–cluster complexes. Finally, we show that the YMCs make up a substantial fraction of recent star formation across the ring, exhibit a nonuniform azimuthal distribution without a very coherent evolutionary trend along the ring, and are capable of driving large-scale gas outflows.more » « less
-
Abstract Recent work has shown that near-infrared (NIR) Hubble Space Telescope (HST) photometry allows us to disentangle multiple populations (MPs) among M dwarfs of globular clusters (GCs) and to investigate this phenomenon in very-low-mass (VLM) stars. Here, we present the color–magnitude diagrams of nine GCs and the open cluster NGC 6791 in the F110W and F160W bands of HST, showing that the main sequences (MSs) below the knee are either broadened or split, thus providing evidence of MPs among VLM stars. In contrast, the MS of NGC 6791 is consistent with a single population. The color distribution of M dwarfs dramatically changes between different GCs, and the color width correlates with the cluster mass. We conclude that the MP ubiquity, variety, and dependence on GC mass are properties common to VLM and more-massive stars. We combined UV, optical, and NIR observations of NGC 2808 and NGC 6121 (M4) to identify MPs along with a wide range of stellar masses (∼0.2–0.8 ⊙ ), from the MS turnoff to the VLM regime, and measured, for the first time, their mass functions (MFs). We find that the fraction of MPs does not depend on the stellar mass and that their MFs have similar slopes. These findings indicate that the properties of MPs do not depend on stellar mass. In a scenario where the second generations formed in higher-density environments than the first generations, the possibility that the MPs formed with the same initial MF would suggest that it does not depend on the environment.more » « less
-
Constraining the original composition of the gas forming first-generation stars in globular clustersABSTRACT Disentangling distinct stellar populations along the red-giant branches (RGBs) of globular clusters (GCs) is possible by using the pseudo-two-colour diagram dubbed chromosome map (ChM). One of the most intriguing findings is that the so-called first-generation (1G) stars, characterized by the same chemical composition of their natal cloud, exhibit extended sequences in the ChM. Unresolved binaries and internal variations in helium or metallicity have been suggested to explain this phenomenon. Here, we derive high-precision Hubble Space Telescope photometry of the GCs NGC 6362 and NGC 6838 and build their ChMs. We find that both 1G RGB and main-sequence (MS) stars exhibit wider ChM sequences than those of second-generation (2G). The evidence of this feature even among unevolved 1G MS stars indicates that chemical inhomogeneities are imprinted in the original gas. We introduce a pseudo-two-magnitude diagram to distinguish between helium and metallicity, and demonstrate that star-to-star metallicity variations are responsible for the extended 1G sequence. Conversely, binaries provide a minor contribution to the phenomenon. We estimate that the metallicity variations within 1G stars of 55 GCs range from less than [Fe/H]∼0.05 to ∼0.30 and mildly correlate with cluster mass. We exploit these findings to constrain the formation scenarios of multiple populations showing that they are qualitatively consistent with the occurrence of multiple generations. In contrast, the fact that 2G stars have more homogeneous iron content than the 1G challenges the scenarios based on accretion of material processed in massive 1G stars on to existing protostars.more » « less
An official website of the United States government
