This content will become publicly available on October 19, 2023
- Editors:
- De Marco Júnior, Paulo
- Award ID(s):
- 1832016
- Publication Date:
- NSF-PAR ID:
- 10378748
- Journal Name:
- PLOS ONE
- Volume:
- 17
- Issue:
- 10
- Page Range or eLocation-ID:
- e0269334
- ISSN:
- 1932-6203
- Sponsoring Org:
- National Science Foundation
More Like this
-
Desert ecosystems are one of the fastest urbanizing areas on the planet. This rapid shift has the potential to alter the abundances and species richness of herbivore and plant communities. Herbivores, for example, are expected to be more abundant within urban desert remnant parks located within cities due to anthropogenic activities that concentrate food resources and reduce native predator populations. Despite this assumption, previous research conducted around Phoenix, AZ, USA has shown that top-down herbivory led to equally reduced plant biomass in both urban and outlying locations. It is unclear if this insignificant difference in herbivory at urban and outlying sites is due to unaltered desert herbivore populations or altered activity levels that counteract abundance differences. Small rodent herbivore/granivore populations were surveyed at four sites inside and four sites outside of the core of Phoenix during fall 2014 and spring 2015 in order to determine whether abundances and richness differ significantly between urban and rural sites. In order to survey species composition and abundance at these sites, 100 Sherman traps and eight larger wire traps that are designed to attract and capture small vertebrates such as mice, rats, and squirrels were set at each site for two consecutive trap nights.more »
-
Urbanization influences food quality and availability for many avian species, with increased access to human refuse and food subsidies in built environments. In relation to such nutritional intakes and their presumed impact on microbes harbored in the intestinal tract and metabolic profiles of host physiological systems, our overall knowledge of the role of gut microbiome (GM) and metabolomic expression in the avian host lags far behind our understanding of mammals. Therefore, the objective of this investigation was to examine the potential differential effect of an urban modeled versus control (i.e., bird seed) diet on the GM, the metabolic profiles of plasma, liver, adipose, kidney, and muscle tissues, and circulating endotoxin and inflammatory factors in urban-caught mourning doves ( Zenaida macroura). We hypothesized that the urban diet would differently impact the profiles of the GM and tissue metabolomes and increase plasma lipopolysaccharide (LPS) and proinflammatory factors compared with animals fed a seed diet. After a 4-wk-diet period, contents of the large intestine were sequenced to profile the microbiome, metabolomic analyses were performed on plasma and tissue homogenates, and circulating LPS and inflammatory markers were assessed. The composition of the GM was significantly dissimilar between diets, with greater abundance of Erysipelatoclostridiaceae, Sanguibacteraceae,more »
-
A central theme in the field of ecology is understanding how environmental variables influence a species’ distribution. In the last 20 years, there has been particular attention given to understanding adaptive physiological traits that allow some species to persist in urban environments. However, there is no clear consensus on how urbanization influences physiology, and it is unclear whether physiological differences in urban birds are directly linked to adverse outcomes or are representative of urban birds adaptively responding to novel environmental variables. Moreover, though low-density suburban development is the fastest advancing form of urbanization, most studies have focused on animals inhabiting high intensity urban habitats. In this study, we measured a suite of physiological variables that reflect condition and immune function in male song sparrows ( Melospiza melodia ) from rural and suburban habitats. Specifically, we measured hematological indices [packed cell volume (PCV), hemoglobin concentration, mean corpuscular hemoglobin concentration (MCHC)], circulating glutathione (total, reduced, and oxidized), oxidative damage (d-ROM concentration), antioxidant capacity, and components of the innate immune system [bacteria killing ability (BKA), white blood cell counts]. We also measured whole-animal indices of health, including body condition (scaled mass index length) and furcular fat. Song sparrows inhabiting suburban environments exhibited lowermore »
-
Abstract
Dietary DNA metabarcoding enables researchers to identify and characterize trophic interactions with a high degree of taxonomic precision. It is also sensitive to sources of bias and contamination in the field and lab. One of the earliest and most common strategies for dealing with such sensitivities has been to filter resulting sequence data to remove low-abundance sequences before conducting ecological analyses based on the presence or absence of food taxa. Although this step is now often perceived to be both necessary and sufficient for cleaning up datasets, evidence to support this perception is lacking and more attention needs to be paid to the related risk of introducing other undesirable errors. Using computer simulations, we demonstrate that common strategies to remove low-abundance sequences can erroneously eliminate true dietary sequences in ways that impact downstream dietary inferences. Using real data from well-studied wildlife populations in Yellowstone National Park, we further show how these strategies can markedly alter the composition of individual dietary profiles in ways that scale-up to obscure ecological interpretations about dietary generalism, specialism, and niche partitioning. Although the practice of removing low-abundance sequences may continue to be a useful strategy to address a subset of research questions that focus -
Abstract Urbanization is driving environmental change on a global scale, creating novel environments for wildlife to colonize. Through a combination of stochastic and selective processes, urbanization is also driving evolutionary change. For instance, difficulty in traversing human‐modified landscapes may isolate newly established populations from rural sources, while novel selective pressures, such as altered disease risk, toxicant exposure, and light pollution, may further diverge populations through local adaptation. Assessing the evolutionary consequences of urban colonization and the processes underlying them is a principle aim of urban evolutionary ecology. In the present study, we revisited the genetic effects of urbanization on red foxes (
Vulpes vulpes ) that colonized Zurich, Switzerland. Through use of genome‐wide single nucleotide polymorphisms and microsatellite markers linked to the major histocompatibility complex (MHC), we expanded upon a previous neutral microsatellite study to assess population structure, characterize patterns of genetic diversity, and detect outliers associated with urbanization. Our results indicated the presence of one large evolutionary cluster, with substructure evident between geographic sampling areas. In urban foxes, we observed patterns of neutral and functional diversity consistent with founder events and reported increased differentiation between populations separated by natural and anthropogenic barriers. We additionally reported evidence of selection acting on MHC‐linkedmore »