skip to main content


Title: Topological wave energy harvesting in bistable lattices
Abstract In this paper, we present an input-independent energy harvesting mechanism exploiting topological solitary waves. This class of medium transforming solitons, or transition waves, entails energy radiation in the form of trailing phonons in discrete bistable lattices. We observe numerically and experimentally that the most dominant frequencies of these phonons are invariant to the input excitations as long as transition waves are generated. The phonon energy at each unit cell is clustered around a single invariant frequency, enabling input-independent resonant harvesting with conventional energy transduction mechanisms. The presented mechanism fundamentally breaks the link between the unit cell size and the metamaterial’s operating frequencies, offering a broadband solution to energy harvesting that is particularly robust for low-frequency input sources. We further investigate the effect of lattice discreteness on the energy harvesting potential, observing two performance gaps and a topological wave harvesting pass band where the potential for energy conversion increases almost monotonically. The observed frequency-invariant phonons are intrinsic to the discrete bistable lattices, enabling broadband energy harvesting to be an inherent metamaterial property.  more » « less
Award ID(s):
1935137
NSF-PAR ID:
10378766
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Smart Materials and Structures
Volume:
31
Issue:
1
ISSN:
0964-1726
Page Range / eLocation ID:
015021
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Transition waves that sequentially switch bistable elements from one stable configuration to another have received significant interest in recent years not only because of their rich physics but also, for their potential applications, including unidirectional propagation, energy harvesting, and mechanical computation. Here, we exploit the propagation of transition waves in a bistable one-dimensional (1D) linkage as a robust mechanism to realize structures that can be quickly deployed. We first use a combination of experiments and analyses to show that, if the bistable joints are properly designed, transition waves can propagate throughout the entire structure and transform the initial straight configuration into a curved one. We then demonstrate that such bistable linkages can be used as building blocks to realize deployable three-dimensional (3D) structures of arbitrary shape.

     
    more » « less
  2. Recent studies by Fong et al. [“Finite roughness effect on modal growth of a hypersonic boundary layer,” AIAA Paper No. 2012-1086, 2012; “Stabilization of hypersonic boundary layer waves using 2-D surface roughness,” AIAA Paper No. 2013-2985, 2013; “Numerical simulation of roughness effect on the stability of a hypersonic boundary layer,” Comput. Fluids 96, 350–367 (2014); and “Second mode suppression in hypersonic boundary layer by roughness: Design and experiments,” AIAA J. 53, 1–6 (2015)] have shown that finite roughness can attenuate Mack's second mode instability when placed at the discrete mode synchronization location for two-dimensional planar flow over a flat plate. However, more practical hypersonic flows are non-planer conical flows, and the roughness effect phenomenon in conical flows has not been extensively investigated. For that reason, this investigation research the ability of finite roughness strips to attenuate the second mode instability on a Mach 8 straight blunt cone with a freestream unit Reynolds number of 9 585 000. Two roughness configurations are studied: a single roughness strip and an array of six sequential strips. N-factor calculations determine the second mode frequency most likely to lead to turbulent transition, and the linear stability theory is used to determine the mode's synchronization location. In the unsteady simulations of the roughness configurations, a blowing-suction actuator introduces an upstream broadband Gaussian pulse. Fourier decomposition of the pulse's history shows that the single roughness strip attenuates frequencies higher than 208 kHz while lower frequencies are amplified. Likewise, the roughness array exhibits similar results, attenuating frequencies higher than 164 kHz and amplifying lower frequencies downstream. The results show that both configurations can delay second mode instability growth on a hypersonic blunt cone and possibly delay turbulent transition. However, investigations of the roughness effect's behavior downstream of the roughness configurations show that disturbance growth resumes and becomes more destabilizing to the boundary layer.

     
    more » « less
  3. BACKGROUND Electromagnetic (EM) waves underpin modern society in profound ways. They are used to carry information, enabling broadcast radio and television, mobile telecommunications, and ubiquitous access to data networks through Wi-Fi and form the backbone of our modern broadband internet through optical fibers. In fundamental physics, EM waves serve as an invaluable tool to probe objects from cosmic to atomic scales. For example, the Laser Interferometer Gravitational-Wave Observatory and atomic clocks, which are some of the most precise human-made instruments in the world, rely on EM waves to reach unprecedented accuracies. This has motivated decades of research to develop coherent EM sources over broad spectral ranges with impressive results: Frequencies in the range of tens of gigahertz (radio and microwave regimes) can readily be generated by electronic oscillators. Resonant tunneling diodes enable the generation of millimeter (mm) and terahertz (THz) waves, which span from tens of gigahertz to a few terahertz. At even higher frequencies, up to the petahertz level, which are usually defined as optical frequencies, coherent waves can be generated by solid-state and gas lasers. However, these approaches often suffer from narrow spectral bandwidths, because they usually rely on well-defined energy states of specific materials, which results in a rather limited spectral coverage. To overcome this limitation, nonlinear frequency-mixing strategies have been developed. These approaches shift the complexity from the EM source to nonresonant-based material effects. Particularly in the optical regime, a wealth of materials exist that support effects that are suitable for frequency mixing. Over the past two decades, the idea of manipulating these materials to form guiding structures (waveguides) has provided improvements in efficiency, miniaturization, and production scale and cost and has been widely implemented for diverse applications. ADVANCES Lithium niobate, a crystal that was first grown in 1949, is a particularly attractive photonic material for frequency mixing because of its favorable material properties. Bulk lithium niobate crystals and weakly confining waveguides have been used for decades for accessing different parts of the EM spectrum, from gigahertz to petahertz frequencies. Now, this material is experiencing renewed interest owing to the commercial availability of thin-film lithium niobate (TFLN). This integrated photonic material platform enables tight mode confinement, which results in frequency-mixing efficiency improvements by orders of magnitude while at the same time offering additional degrees of freedom for engineering the optical properties by using approaches such as dispersion engineering. Importantly, the large refractive index contrast of TFLN enables, for the first time, the realization of lithium niobate–based photonic integrated circuits on a wafer scale. OUTLOOK The broad spectral coverage, ultralow power requirements, and flexibilities of lithium niobate photonics in EM wave generation provides a large toolset to explore new device functionalities. Furthermore, the adoption of lithium niobate–integrated photonics in foundries is a promising approach to miniaturize essential bench-top optical systems using wafer scale production. Heterogeneous integration of active materials with lithium niobate has the potential to create integrated photonic circuits with rich functionalities. Applications such as high-speed communications, scalable quantum computing, artificial intelligence and neuromorphic computing, and compact optical clocks for satellites and precision sensing are expected to particularly benefit from these advances and provide a wealth of opportunities for commercial exploration. Also, bulk crystals and weakly confining waveguides in lithium niobate are expected to keep playing a crucial role in the near future because of their advantages in high-power and loss-sensitive quantum optics applications. As such, lithium niobate photonics holds great promise for unlocking the EM spectrum and reshaping information technologies for our society in the future. Lithium niobate spectral coverage. The EM spectral range and processes for generating EM frequencies when using lithium niobate (LN) for frequency mixing. AO, acousto-optic; AOM, acousto-optic modulation; χ (2) , second-order nonlinearity; χ (3) , third-order nonlinearity; EO, electro-optic; EOM, electro-optic modulation; HHG, high-harmonic generation; IR, infrared; OFC, optical frequency comb; OPO, optical paramedic oscillator; OR, optical rectification; SCG, supercontinuum generation; SHG, second-harmonic generation; UV, ultraviolet. 
    more » « less
  4. Abstract

    Bistable composite laminates have exhibited enormous potential in morphing and energy harvesting followed by a wide range of application in aerospace, power generation and automobile industries. This study presents the fatigue analysis of bistable laminates in terms of stiffness degradation and loss of bistability. Moisture saturation of the specimens are ensured by keeping them in a controlled laboratory environment for an extended period of time. Mass of the specimens have been measured to quantify the moisture saturation. Fatigue tests are performed at 1 Hz frequency, and R = −1 stress ratio which is the ratio of minimum stress to maximum stress. Specimens are tested for 3 million cycles in displacement control. Load-displacement plot from the test is divided into 5 stiffness regions. A piecewise study of each region has demonstrated good agreement with existing analytical model. Stiffness degradation in 4 regions corresponding to 2 stable configurations follows general trend for composites up to the second stage of damage in three stage damage progression model while the remaining region corresponding to unstable configuration is not considered in this analysis. Test results have been reproduced with minor discrepancy at the specified environmental and loading condition, ply configuration, and size of the laminate. Test protocols, results, and damage analysis presented in this study can be utilized to evaluate the fatigue performance of multistable CFRP structures subjected to higher amplitudes and frequencies.

     
    more » « less
  5. Vibration-based energy harvesting via microelectromechanical system- (MEMS-) scale devices presents numerous challenges due to difficulties in maximizing power output at low driving frequencies. This work investigates the performance of a uniquely designed microscale bistable vibration energy harvester featuring a central buckled beam coated with a piezoelectric layer. In this design, the central beam is pinned at its midpoint by using a torsional rod, which in turn is connected to two cantilever arms designed to induce bistable motion of the central buckled beam. The ability to induce switching between stable states is a critical strategy for boosting power output of MEMS. This study presents the formulation of a model to analyze the static and dynamic behaviors of the coupled structure, with a focus on the evolution of elongation strain within the piezoelectric layer. Cases of various initial buckling stress levels, driving frequencies, and driving amplitude were considered to identify regimes of viable energy harvesting. Results showed that bistable-state switching, or snap-through motion of the buckled beam, produced a significant increase in power production potential over a range of driving frequencies. These results indicate that optimal vibration scavenging requires an approach that balances the initial buckling stress level with the expected range of driving frequencies for a particular environment. 
    more » « less