Abstract Interface stress between structural materials and thin film coatings has a significant influence on the resonant frequency of microelectromechanical system (MEMS) resonators. In this work, the axial stress on different types of buckled bridge MEMS resonator structures is controlled through the solid‐to‐solid phase transition of a VO2thin film coating. The devices have identical dimensions, but different buckling orientations and profiles due to the combined effect of overetching and residual thermal stress mismatch. Thermal actuation is used to tune the resonant frequency of the device, but the changes in frequency are found to be dependent on the type of buckling for the device. Thermal actuation is achieved by applying an electrical current to integrated heaters, or by uniform substrate heating. Bidirectional tunability is found when substrate heating is used, while Joule heating shows a monotonic change in frequency. This phenomenon can be attributed to the transition in boundary conditions, where the turning points are indicated by the prominent changes in buckling amplitude. In addition, devices with opposite buckling orientations exhibit different tuning behaviors which can be explained by different bending moments induced by beam stress interface modification.
more »
« less
Snap-Through and Mechanical Strain Analysis of a MEMS Bistable Vibration Energy Harvester
Vibration-based energy harvesting via microelectromechanical system- (MEMS-) scale devices presents numerous challenges due to difficulties in maximizing power output at low driving frequencies. This work investigates the performance of a uniquely designed microscale bistable vibration energy harvester featuring a central buckled beam coated with a piezoelectric layer. In this design, the central beam is pinned at its midpoint by using a torsional rod, which in turn is connected to two cantilever arms designed to induce bistable motion of the central buckled beam. The ability to induce switching between stable states is a critical strategy for boosting power output of MEMS. This study presents the formulation of a model to analyze the static and dynamic behaviors of the coupled structure, with a focus on the evolution of elongation strain within the piezoelectric layer. Cases of various initial buckling stress levels, driving frequencies, and driving amplitude were considered to identify regimes of viable energy harvesting. Results showed that bistable-state switching, or snap-through motion of the buckled beam, produced a significant increase in power production potential over a range of driving frequencies. These results indicate that optimal vibration scavenging requires an approach that balances the initial buckling stress level with the expected range of driving frequencies for a particular environment.
more »
« less
- Award ID(s):
- 1408005
- PAR ID:
- 10091622
- Date Published:
- Journal Name:
- Shock and Vibration
- Volume:
- 2019
- ISSN:
- 1070-9622
- Page Range / eLocation ID:
- 1 to 10
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Piezoelectric transducers are widely employed in vibration control and energy harvesting. The effective electro-mechanical coupling of a piezoelectric system is related to the inherent capacitance of the piezoelectric transducer. It is known that passive vibration suppression through piezoelectric LC shunt can be enhanced with the integration of negative capacitance which however requires a power supply. This research focuses on the parametric investigation of a self-sustainable negative capacitance where the piezoelectric transducer is concurrently used in both vibration suppression and energy harvesting through LC shunt. The basic idea is to utilize the energy harvesting functionality of the piezoelectric transducer to aid the usage of negative capacitance in terms of power supply. Specifically, the power consumption and circuitry performance with respect to negative capacitance circuit design is analyzed thoroughly. Indeed, the net power generation is the difference between available power in the shunt circuit and the power consumption of the negative capacitance circuit. There exists complex tradeoffs between net power generation and the vibration suppression performance when we use different resistance values in the negative capacitance circuit. It is demonstrated through correlated analytical simulation and experimental study that the proper selection of the resistance values in the negative capacitance circuit can result in vibration suppression enhancement as well as improved net power generation, leading to a self-sustainable negative capacitance scheme.more » « less
-
Motivated to run a self-powering monitoring sensor on a wind turbine blade, this paper proposes a pendulum based frequency-up converter that effectively captures a low-speed mechanical rotation into high-frequency vibration of a piezoelectric cantilever beam. A system of governing equations for the proposed concept is developed to describe the motion of the pendulum, the vibration of the beam, and the voltage output of the harvester. Design optimization is performed to improve the power generation performance, and the simulation results are verified experimentally. We demonstrate the improved power density from the proposed concept compared to the disk driven frequency-up converters.more » « less
-
Creating self-sustaining wireless sensor networks to power the Internet of Things requires universal energy harvesting systems. MEMS energy harvesters are in particular demand as they can be batch fabricated to meet the large supply demands. However, currently silicon MEMS kinetic energy harvesters are fabricated with a narrow bandwidth of 1–2 Hz, so each application requires a custom designed device which limits the advantages of batch fabrication. This paper investigates the development of a passive tuning MEMS vibration energy harvesting method that is based on distributing the load to various locations along the proof mass using a liquid load. A 3D printed proof mass with an array of cavities was developed, where each cavity could be filled with liquid to alter the resonant frequency as desired. Cavities were filled with silicone oil to validate the concept. The results illustrate tuning of the frequency with a resolution of < 1 Hz and a range of approximately 50 Hz. This method represents a passive tuning method as no power is required and the tuning can be accomplished during manufacturing so that one single universal energy harvester could be made and then tuned to meet the end user’s frequency specification.more » « less
-
null (Ed.)This paper presents the integration of an AC-DC rectifier and a DC-DC boost converter circuit designed in 180 nm CMOS process for ultra-low frequency (<; 10 Hz) energy harvesting applications. The proposed rectifier is a very low voltage CMOS rectifier circuit that rectifies the low-frequency signal of 100-250 mV amplitude and 1-10 Hz frequency into DC voltage. In this work, the energy is harvested from the REWOD (reverse electrowetting-on-dielectric) generator, which is a reverse electrowetting technique that converts mechanical vibrations to electrical energy. The objective is to develop a REWOD-based self-powered motion (such as walking, running, jogging, etc.) tracking sensors that can be worn, thus harvesting energy from regular activities. To this end, the proposed circuits are designed in such a way that the output from the REWOD is rectified and regulated using a DC-DC converter which is a 5-stage cross-coupled switching circuit. Simulation results show a voltage range of 1.1 V-2.1 V, i.e., 850-1200% voltage conversion efficiency (VCE) and 30% power conversion efficiency (PCE) for low input signal in the range 100-250 mV in the low-frequency range. This performance verifies the integration of the rectifier and DC-DC boost converter which makes it highly suitable for various motion-based energy harvesting applications.more » « less
An official website of the United States government

