Abstract Mounting evidence suggests that fishing can be a major driver of coral‐to‐macroalgae regime shifts on tropical reefs. In many small‐scale coral reef fisheries, fishers target herbivorous fishes, which can weaken coral resilience via reduced herbivory on macroalgae that then outcompete corals. Previous models that explored the effects of harvesting herbivores revealed hysteresis in the herbivory–benthic state relationship that results in bistability of coral‐ and macroalgae‐dominated states over some levels of fishing pressure, which has been supported by empirical evidence. However, past models have not accounted for the functional differences among herbivores or how fisher selectivity for different herbivore functional groups may alter the benthic dynamics and resilience. Here, we use a dynamic model that links differential fishing on two key herbivore functional groups to the outcome of competitive dynamics between coral and macroalgae. We show that reef state depends not only on the level of fishing but also on the types of herbivores targeted by fishers. Selectively fishing browsing herbivores that are capable of consuming mature macroalgae (e.g., unicornfish) increases precariousness of the coral state by moving the system close to the coral‐to‐macroalgae tipping point. By contrast, selectively harvesting grazing herbivores that are only capable of preventing macroalgae from becoming established (e.g., parrotfishes) can increase catch yields substantially more before the tipping point is reached. However, this lower precariousness with increasing fishing effort comes at the cost of increasing the range of fishing effort over which coral and macroalgae are bistable; increasing hysteresis makes a regime shift triggered by a disturbance more difficult or impractical to reverse. Our results suggest that management strategies for small‐scale coral reef fisheries should consider how functional differences among harvested herbivores coupled with fisher selectivity influence benthic dynamics in light of the trade‐off between tipping point precariousness and coral recovery dynamics following large disturbances.
more »
« less
Cultivating Macroalgae for Biofuels: Visualizing the Chemistry
Marine macroalgae in the Gulf of Mexico is an important potential source for biofuel. However, identifying locations with the correct biogeochemical and hydrodynamic conditions for cultivation on a large enough scale to meet the needs of the U.S. private energy sector is impossible from purely observational studies. Large-scale, HPC modeling of earth systems processes enables researchers to study complex physical relationships with high fidelity. Here, we present novel visualization techniques showing the results of a global run of the E3SM’s MPAS-Ocean model data with biogeochemistry extensions to improve ongoing research in macroalgae cultivation.
more »
« less
- Award ID(s):
- 1704904
- PAR ID:
- 10378947
- Editor(s):
- Wylie, B.
- Date Published:
- Journal Name:
- International Conference for High Performance Computing Networking Storage and Analysis
- ISSN:
- 2167-4329
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
To keep global surface warming below 1.5°C by 2100, the portfolio of cost-effective CDR technologies must expand. To evaluate the potential of macroalgae CDR, we developed a kelp aquaculture bio-techno-economic model in which large quantities of kelp would be farmed at an offshore site, transported to a deep water “sink site”, and then deposited below the sequestration horizon (1,000 m). We estimated the costs and associated emissions of nursery production, permitting, farm construction, ocean cultivation, biomass transport, and Monitoring, Reporting, and Verification (MRV) for a 1,000 acre (405 ha) “baseline” project located in the Gulf of Maine, USA. The baseline kelp CDR model applies current systems of kelp cultivation to deep water (100 m) exposed sites using best available modeling methods. We calculated the levelized unit costs of CO 2 eq sequestration (LCOC; $ tCO 2 eq -1 ). Under baseline assumptions, LCOC was $17,048 tCO 2 eq -1 . Despite annually sequestering 628 tCO 2 eq within kelp biomass at the sink site, the project was only able to net 244 C credits (tCO 2 eq) each year, a true sequestration “additionality” rate (AR) of 39% (i.e., the ratio of net C credits produced to gross C sequestered within kelp biomass). As a result of optimizing 18 key parameters for which we identified a range within the literature, LCOC fell to $1,257 tCO 2 eq -1 and AR increased to 91%, demonstrating that substantial cost reductions could be achieved through process improvement and decarbonization of production supply chains. Kelp CDR may be limited by high production costs and energy intensive operations, as well as MRV uncertainty. To resolve these challenges, R&D must (1) de-risk farm designs that maximize lease space, (2) automate the seeding and harvest processes, (3) leverage selective breeding to increase yields, (4) assess the cost-benefit of gametophyte nursery culture as both a platform for selective breeding and driver of operating cost reductions, (5) decarbonize equipment supply chains, energy usage, and ocean cultivation by sourcing electricity from renewables and employing low GHG impact materials with long lifespans, and (6) develop low-cost and accurate MRV techniques for ocean-based CDR.more » « less
-
Abstract Nutrient pollution is altering coastal ecosystems worldwide. On coral reefs, excess nutrients can favor the production of algae at the expense of reef‐building corals, yet the role of nutrients in driving community changes such as shifts from coral to macroalgae is not well understood. Here we investigate the potential role of anthropogenic nutrient loading in driving recent coral‐to‐macroalgae phase shifts on reefs in the lagoons surrounding the Pacific island of Moorea, French Polynesia. We use nitrogen (N) tissue content and stable isotopes (δ15N) in an abundant macroalga (Turbinaria ornata) together with empirical models of nutrient discharge to describe spatial and temporal patterns of nutrient enrichment in the lagoons. We then employ time series data to test whether recent increases in macroalgae are associated with nutrients. Our results revealed that patterns of N enrichment were linked to several factors, including rainfall, wave‐driven circulation, and distance from anthropogenic nutrient sources, especially human sewage. Reefs near large watersheds, where inputs of N from sewage and agriculture are high, have been consistently enriched in N for at least the last decade. In many of these areas, corals have decreased and macroalgae have increased, while reefs with lower levels of N input have maintained high cover of coral and low cover of macroalgae. Importantly, these patchy phase shifts to macroalgae have occurred despite substantial island‐wide increases in the density and biomass of herbivorous fishes over the time period. Together, these results indicate that nutrient loading may be an important driver of coral‐to‐macroalgae phase shifts in the lagoons of Moorea even though the reefs harbor an abundant and diverse herbivore assemblage. These results emphasize the important role that bottom‐up factors can play in driving coral‐to‐macroalgae phase shifts and underscore the critical importance of watershed management for reducing inputs of nutrients and other land‐based pollutants to coral reef ecosystems.more » « less
-
Abstract The rise of eukaryotic macroalgae in the late Mesoproterozoic to early Neoproterozoic was a critical development in Earth’s history that triggered dramatic changes in biogeochemical cycles and benthic habitats, ultimately resulting in ecosystems habitable to animals. However, evidence of the diversification and expansion of macroalgae is limited by a biased fossil record. Non-mineralizing organisms are rarely preserved, occurring only in exceptional environments that favor fossilization. Investigating the taphonomy of well-preserved macroalgae will aid in identifying these target environments, allowing ecological trends to be disentangled from taphonomic overprints. Here we describe the taphonomy of macroalgal fossils from the Tonian Dolores Creek Formation (ca. 950 Ma) of northwestern Canada (Yukon Territory) that preserves cm-scale macroalgae. Analytical microscopy, including scanning electron microscopy and tomographic x-ray microscopy, was used to investigate fossil preservation, which was the result of a combination of pyritization and aluminosilicification, similar to accessory mineralization observed in Paleozoic Burgess Shale-type fossils. These new Neoproterozoic fossils help to bridge a gap in the fossil record of early algae, offer a link between the fossil and molecular record, and provide new insights into evolution during the Tonian Period, when many eukaryotic lineages are predicted to have diversified.more » « less
-
Mahmoud Amouzadeh Tabrizi (Ed.)Agriculturally derived biowastes can be transformed into a diverse range of materials, including powders, fibers, and filaments, which can be used in additive manufacturing methods. This review study reports a study that analyzes the existing literature on the development of novel materials from agriculturally derived biowastes for additive manufacturing methods. A review was conducted of 57 selected publications since 2016 covering various agriculturally derived biowastes, different additive manufacturing methods, and potential large-scale applications of additive manufacturing using these materials. Wood, fish, and algal cultivation wastes were also included in the broader category of agriculturally derived biowastes. Further research and development are required to optimize the use of agriculturally derived biowastes for additive manufacturing, particularly with regard to material innovation, improving print quality and mechanical properties, as well as exploring large-scale industrial applications.more » « less
An official website of the United States government

