skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Landscape‐scale patterns of nutrient enrichment in a coral reef ecosystem: implications for coral to algae phase shifts
Abstract Nutrient pollution is altering coastal ecosystems worldwide. On coral reefs, excess nutrients can favor the production of algae at the expense of reef‐building corals, yet the role of nutrients in driving community changes such as shifts from coral to macroalgae is not well understood. Here we investigate the potential role of anthropogenic nutrient loading in driving recent coral‐to‐macroalgae phase shifts on reefs in the lagoons surrounding the Pacific island of Moorea, French Polynesia. We use nitrogen (N) tissue content and stable isotopes (δ15N) in an abundant macroalga (Turbinaria ornata) together with empirical models of nutrient discharge to describe spatial and temporal patterns of nutrient enrichment in the lagoons. We then employ time series data to test whether recent increases in macroalgae are associated with nutrients. Our results revealed that patterns of N enrichment were linked to several factors, including rainfall, wave‐driven circulation, and distance from anthropogenic nutrient sources, especially human sewage. Reefs near large watersheds, where inputs of N from sewage and agriculture are high, have been consistently enriched in N for at least the last decade. In many of these areas, corals have decreased and macroalgae have increased, while reefs with lower levels of N input have maintained high cover of coral and low cover of macroalgae. Importantly, these patchy phase shifts to macroalgae have occurred despite substantial island‐wide increases in the density and biomass of herbivorous fishes over the time period. Together, these results indicate that nutrient loading may be an important driver of coral‐to‐macroalgae phase shifts in the lagoons of Moorea even though the reefs harbor an abundant and diverse herbivore assemblage. These results emphasize the important role that bottom‐up factors can play in driving coral‐to‐macroalgae phase shifts and underscore the critical importance of watershed management for reducing inputs of nutrients and other land‐based pollutants to coral reef ecosystems.  more » « less
Award ID(s):
1637396
PAR ID:
10454244
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecological Applications
Volume:
31
Issue:
1
ISSN:
1051-0761
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ecological theory predicts that ecosystems with multiple basins of attraction can get locked in an undesired state, which has profound ecological and management implications. Despite their significance, alternative attractors have proven to be challenging to detect and characterize in natural communities. On coral reefs, it has been hypothesized that persistent coral-to-macroalgae “phase shifts” that can result from overfishing of herbivores and/or nutrient enrichment may reflect a regime shift to an alternate attractor, but, to date, the evidence has been equivocal. Our field experiments in Moorea, French Polynesia, revealed the following: (i) hysteresis existed in the herbivory–macroalgae relationship, creating the potential for coral–macroalgae bistability at some levels of herbivory, and (ii) macroalgae were an alternative attractor under prevailing conditions in the lagoon but not on the fore reef, where ambient herbivory fell outside the experimentally delineated region of hysteresis. These findings help explain the different community responses to disturbances between lagoon and fore reef habitats of Moorea over the past several decades and reinforce the idea that reversing an undesired shift on coral reefs can be difficult. Our experimental framework represents a powerful diagnostic tool to probe for multiple attractors in ecological systems and, as such, can inform management strategies needed to maintain critical ecosystem functions in the face of escalating stresses. 
    more » « less
  2. Abstract Coral reefs continue to experience extreme environmental pressure from climate change stressors, but many coral reefs are also exposed to eutrophication. It has been proposed that changes in the stoichiometry of ambient nutrients increase the mortality of corals, whereas eutrophication may facilitate phase shifts to macroalgae-dominated coral reefs when herbivory is low or absent. But are corals ever nutrient limited, and can eutrophication destabilize the coral symbiosis making it more sensitive to environmental stress because of climate change? The effects of eutrophication are confounded not just by the effects of climate change but by the presence of chemical pollutants in industrial, urban, and agricultural wastes. Because of these confounding effects, the increases in nutrients or changes in their stoichiometry in coastal environments, although they are important at the organismal and community level, cannot currently be disentangled from each other or from the more significant effects of climate change stressors on coral reefs. 
    more » « less
  3. Caribbean coral reefs are experiencing a shift to algal dominance at the expense of stony corals. Determining the factors leading to algal phase shifts is crucial for assuring the survival of Caribbean coral reefs. In this study, factors controlling the growth of the abundant brown macroalgae Dictyota spp. were investigated by varying herbivory pressure (caging) and nutrients (fertilizer addition) on coral reefs near St. Thomas (US Virgin Islands). Experiment 1 measured Dictyota heights and percent cover at 3 sites (11-20 m depth) and showed no growth response to nutrient addition and a weak negative response to herbivory. To confirm results of Experiment 1, a caging and nutrient manipulation (Experiment 2) was conducted at one site (14 m depth) using the dependent variable Dictyota biomass. A strong negative response of growth to nutrient addition was shown, presumably because of nutrient inhibition, and an equally negative response to herbivory (loss of ~50% biomass over 21 d). The inhibitory effect of fertilization on growth was confirmed in a third experiment that showed increasing biomass loss over 4 treatment levels of increasing fertilizer addition (0 [ambient], 5, 10, 20 g). Overall, Dictyota was not nutrient limited at any sites, and was weakly controlled by herbivore populations. Factors responsible for Dictyota abundance on Caribbean reefs may reflect decreased herbivory caused by overfishing and reductions in coral cover and do not appear to be affected by recent changes in nitrogen or phosphorus load. This study reinforces the need for conservation and management of herbivores in coral reef ecosystems, to mitigate the effects from anthropogenic stressors. 
    more » « less
  4. Microorganisms are central to the functioning of coral reef ecosystems, but their dynamics are unstudied on most reefs. We examined the microbial ecology of shallow reefs within the Federated States of Micronesia. We surveyed 20 reefs surrounding 7 islands and atolls (Yap, Woleai, Olimarao, Kosrae, Kapingamarangi, Nukuoro, and Pohnpei), spanning 875053 km 2 . On the reefs, we found consistently higher coral coverage (mean ± SD = 36.9 ± 22.2%; max 77%) compared to macroalgae coverage (15.2 ± 15.5%; max 58%), and low abundances of fish. Reef waters had low inorganic nutrient concentrations and were dominated by Synechococcus, Prochlorococcus, and SAR11 bacteria. The richness of bacterial and archaeal communities was significantly related to interactions between island/atoll and depth. High coral coverage on reefs was linked to higher relative abundances of Flavobacteriaceae, Leisingera, Owenweeksia, Vibrio, and the OM27 clade, as well as other heterotrophic bacterial groups, consistent with communities residing in waters near corals and within coral mucus. Microbial community structure at reef depth was significantly correlated with geographic distance, suggesting that island biogeography influences reef microbial communities. Reefs at Kosrae Island, which hosted the highest coral abundance and diversity, were unique compared to other locations; seawater from Kosrae reefs had the lowest organic carbon (59.8-67.9 µM), highest organic nitrogen (4.5-5.3 µM), and harbored consistent microbial communities (>85% similar), which were dominated by heterotrophic cells. This study suggests that the reef-water microbial ecology on Micronesian reefs is influenced by the density and diversity of corals as well as other biogeographical features. 
    more » « less
  5. Abstract Many coral reefs have shifted from coral‐ to macroalgae‐dominated community states, heightening the need to understand resilience of coral communities. Fishing on herbivores often reduces resilience of the coral state, as lower herbivory fosters macroalgal establishment. Despite the acknowledged importance of fishing, relatively little attention has been paid to how fishers change their behavior as macroalgae overgrow reefs, or how the resulting dynamic feedbacks might affect resilience. We address these questions in Moorea, French Polynesia, where local fishers target herbivorous fishes and where shifts to algal dominance have occurred on some lagoon reefs. We quantified fisher preferences for reef habitats where they target various taxa. For the two most ecologically important taxa of herbivores targeted in the fishery, parrotfish (Scaridae) and unicornfish (Naso), fishers preferred to harvest from locations with less macroalgae. We incorporated these habitat preferences into a spatially explicit social–ecological model of reef dynamics to explore consequences of changes in fishing behavior for resilience of the coral state, particularly following disturbance. Fishing that targets low‐macroalgae locations typically generates resilience by facilitating local recovery of herbivores and thus of coral in the less‐targeted macroalgae‐dominated patches. However, the resulting movement of fishers across the seascape can sometimes create fragility; if coral loss is widespread, avoidance of macroalgae concentrates fishing in patches having the highest coral cover, resulting in loss of coral via reduced herbivory. Our results emphasize that resilience and coral‐macroalgae regime shifts cannot be understood without considering humans as a dynamic part of the system. 
    more » « less