skip to main content

Title: Impacts of Protected Area Deforestation on Dry‐Season Regional Climate in the Brazilian Amazon

Rainforest in protected areas in the Brazilian Amazon is at risk due to increasing economic pressures and recent weakening of environmental agencies and legislation by the federal administration. This study examines the impacts of deforestation in protected areas on dry‐season precipitation in the Brazilian state of Rondônia located in the southwestern Brazilian Amazon. Regional‐climate model simulations indicate that clearing protected forests in Rondônia would result in substantial changes to the surface energy balance, including increased sensible and decreased latent heat flux. Consequent changes to low‐level wind circulation would enhance moisture flux convergence and convection over the newly deforested areas, leading to enhanced rainfall in those areas. However, deforestation of protected areas would decrease dry season rainfall up to 30% in the existing agricultural region, with potentially important negative impacts on agricultural production. Additionally, our results indicate that following deforestation, the newly degraded areas will experience warmer and drier afternoons that could place the remaining natural vegetation under vapor deficit stress.

more » « less
Award ID(s):
1633831 1825046
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Atmospheres
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Tropical rainforests provide essential ecosystem services to agricultural areas, including moisture recycling. In the Amazon basin, drought frequency has increased in the late 20th and early 21st centuries, but the role of forests, ocean, and nonforested areas in causing or mitigating drought has not been determined. Using a precipitationshed moisture tracking framework, we quantify the contribution sources of evaporation to rainfall in Rondônia in the Brazilian Amazon. Forests account for ∼48% of annual rainfall on average, and more than half of the forest source is from protected areas (PAs). During droughts in 2005 and 2010, moisture supply decreased from oceans and nonforested areas, while supply from forests was stable and compensated for the decrease. Remote sensing and land surface models corroborate the relative insensitivity of forest evapotranspiration to droughts. Forests mitigate drought in the agricultural study region, providing an important ecosystem service that could be disrupted with further deforestation.

    more » « less
  2. Abstract

    Water is redistributed from evaporation sources to precipitation sinks through atmospheric moisture transport. In the Brazilian Amazon, the spatial and temporal variability of dry season moisture sources for key agricultural regions has not been investigated. This study investigates moisture sources for dry season rainfall in the state of Rondônia in Brazil, especially during drought years. Using a precipitationshed framework, we quantified the variability of moisture contributions to rainfall in the state of Rondônia (Brazilian Amazon) and the influence of synoptic circulation patterns. Ocean evaporation accounts for 58% of mean dry season precipitation while continental recycling contributed 42%. During drought years, although forests maintain or increase evapotranspiration, the moisture contribution of both ocean and forests to dry season rainfall decreases due to the synoptic circulation changes, reducing the moisture transport into Rondônia.

    more » « less
  3. Rainfall in the Amazon is influenced by atmospheric circulation dynamics on multiple spatiotemporal scales. Anthropogenic influences such as deforestation, land-use changes, and global climate change are also critical factors in determining rainfall in South America. Modeling studies have projected a drier climate with the ongoing deforestation in the Amazon, but observational evaluation of the variability of rainfall and deforestation patterns has been limited. This study analyzes spatiotemporal trends in rainfall between 1981 and 2020 and relationships with deforestation age in the Brazilian Legal Amazon (BLA). An improved rainfall dataset is derived by calibrating the Climate Hazards Group Infrared Precipitation with Stations (CHIRPS) data with observations from a rain gauge network in the BLA. Trend analysis is employed to identify significant changes in precipitation over the BLA. Satellite-based land cover data Mapbiomas and ET datasets are used to evaluate similar trends. While large spatial variability is observed, the results show coherent relationships between negative dry-season rainfall trends and old-age deforested areas. Deforestation aged up to a decade enhanced rainfall and older deforested regions have reduced rainfall during the dry season. These results suggest substantial changes in the hydroclimate of the BLA and increased vulnerability to future land cover change. 
    more » « less
  4. Brazilian tropical ecosystems in the state of Mato Grosso have experienced significant land use and cover changes during the past few decades due to deforestation and wildfire. These changes can directly affect the mass and energy exchange near the surface and, consequently, evapotranspiration (ET). Characterization of the seasonal patterns of ET can help in understanding how these tropical ecosystems function with a changing climate. The goal of this study was to characterize temporal (seasonal-to-decadal) and spatial patterns in ET over Mato Grosso using remotely sensed products. Ecosystems over areas with limited to no flux towers can be performed using remote sensing products such as NASA’s MOD16A2 ET (MOD16 ET). As the accuracy of this product in tropical ecosystems is unknown, a secondary objective of this study was to evaluate the ability of the MOD16 ET (ETMODIS) to appropriately represent the spatial and seasonal ET patterns in Mato Grosso, Brazil. Actual ET was measured (ETMeasured) using eight flux towers, three in the Amazon, three in the Cerrado, and two in the Pantanal of Mato Grosso. In general, the ETMODIS of all sites had no significant difference from ETMeasured during all analyzed periods, and ETMODIS had a significant moderate to strong correlation with the ETMeasured. The spatial variation of ET had some similarity to the climatology of Mato Grosso, with higher ET in the mid to southern parts of Mato Grosso (Cerrado and Pantanal) during the wet period compared to the dry period. The ET in the Amazon had three seasonal patterns, a higher and lower ET in the wet season compared to the dry season, and minimal to insignificant variation in ET during the wet and dry seasons. The wet season ET in Amazon decreased from the first and second decades, but the ET during the wet and dry season increased in Cerrado and Pantanal in the same period. This study highlights the importance of deepening the study of ET in the state of Mato Grosso due to the land cover and climate change. 
    more » « less
  5. Abstract

    Recent severe droughts, extreme floods, and increasing differences between seasonal high and low flows on the Amazon River may represent a twenty-first-century increase in the amplitude of the hydrologic cycle over the Amazon Basin. These precipitation and streamflow changes may have arisen from natural ocean–atmospheric variability, deforestation within the drainage basin of the Amazon River, or anthropogenic climate change. Tree-ring reconstructions of wet-season precipitation extremes, substantiated with historical accounts of climate and river levels on the Amazon River and in northeast Brazil found in the Brazilian Digital Library, indicate that the recent river-level extremes on the Amazon may have been equaled or possibly exceeded during the preinstrumental nineteenth century. The “Forgotten Drought” of 1865 was the lowest wet-season rainfall total reconstructed with tree-rings in the eastern Amazon from 1790 to 2016 and appears to have been one of the lowest stream levels observed on the Amazon River during the historical era according to first-hand descriptions by Louis Agassiz, his Brazilian colleague João Martins da Silva Coutinho, and others. Heavy rains and flooding are described during most of the tree-ring-reconstructed wet extremes, including the complete inundation of “First Street” in Santarem, Brazil, in 1859 and the overtopping of the Bittencourt Bridge in Manaus, Brazil, in 1892. These extremes in the tree-ring estimates and historical observations indicate that recent high and low flow anomalies on the Amazon River may not have exceeded the natural variability of precipitation and streamflow during the nineteenth century.

    Significance Statement

    Proxy tree-ring and historical evidence for precipitation extremes during the preinstrumental nineteenth century indicate that recent floods and droughts on the Amazon River may have not yet exceeded the range of natural hydroclimatic variability.

    more » « less